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Abstract

Web page clustering methods categorize and organize
search results into semantically meaningful clusters that as-
sist users with search refinement; but finding clusters that
are semantically meaningful to users is difficult. In this
paper, we describe a new web page clustering algorithm,
QDC, which uses the user’s query as part of a reliable mea-
sure of cluster quality. The new algorithm has five key in-
novations: a new query directed cluster quality guide that
uses the relationship between clusters and the query, an im-
proved cluster merging method that generates semantically
coherent clusters by using cluster description similarity in
additional to cluster overlap, a new cluster splitting method
that fixes the cluster chaining or cluster drifting problem, an
improved heuristic for cluster selection that uses the query
directed cluster quality guide, and a new method of improv-
ing clusters by ranking the pages by relevance to the cluster.
We evaluate QDC by comparing its clustering performance
against that of four other algorithms on eight data sets (four
use full text data and four use snippet data) by using eleven
different external evaluation measurements. We also eval-
uate QDC by informally analysing its real world usability
and performance through comparison with six other algo-
rithms on four data sets. QDC provides a substantial per-
formance improvement over other web page clustering al-
gorithms.

1 Introduction

Web search is difficult because it is hard for users to
construct queries that are both sufficiently descriptive and
sufficiently discriminating to find just the web pages that
are relevant to the user’s search goal. Queries are often
ambiguous: words and phrases are frequently polyseman-
tic and user search goals are often narrower in scope than
the queries used to express them. This ambiguity leads to
search result sets containing distinct page groups that meet

different user search goals. Often users must refine their
search by modifying the query to filter out the irrelevant re-
sults. Users must understand the result set to refine queries
effectively; but this is time consuming, if the result set is
unorganised.

Web page clustering is one approach for assisting
users to both comprehend the result set and to refine the
query. Web page clustering algorithms identify semanti-
cally meaningful groups of web pages and present these to
the user as clusters. The clusters provide an overview of the
contents of the result set and when a cluster is selected the
result set is refined to just the relevant pages in that cluster.

Clustering performance is very important for usability.
If cluster quality is poor, the clusters will be semanti-
cally meaningless or will contain many irrelevant pages.
If cluster coverage is poor, then clusters representing use-
ful groups of pages will be missing or the clusters will be
missing many relevant pages. Therefore, improving the per-
formance of web page clustering algorithms is both worth-
while and very important.

This paper presents QDC, a query directed web page
clustering algorithm that gives better clustering perfor-
mance than other clustering algorithms. QDC has five key
innovations: a new query directed cluster quality guide that
uses the relationship between clusters and the query, an im-
proved cluster merging method that generates semantically
coherent clusters by using cluster description similarity in
additional to cluster overlap, a new cluster splitting method
that fixes the cluster chaining (drifting) problem, an im-
proved heuristic for cluster selection that uses the query di-
rected cluster quality guide, and a new method of improving
clusters by ranking the pages by relevance to the cluster.

The next section of the paper sets QDC in context of
the other research in the field by describing related work.
The following sections describe the algorithm and evaluate
QDC by comparing its performance against other clustering
algorithms.
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2 Related Work

Most clustering algorithms for web pages start by pre-
processing the pages in a standard way. Various page ele-
ments and words are removed from the pages: HTML tags,
punctuation and other similar non-informative text, a set
of stop words containing very common and uninformative
words such as “the”, “it”, and “on”. Light stemming, using
the Porter stemming algorithm [12], is often applied to re-
duce terms to their root form, for example, “dogs” becomes
“dog”. This leaves each page represented by a sequence of
words.

There are several models used to represent the pre-
processed pages, the most common models are the bag
of terms and set of terms. Terms can be either words or
phrases, although often just words are used. There are also
graph based models that preserve the ordering of document
terms [13]; one that is quite efficient is the suffix tree model
[19].

Researchers have applied all the standard data cluster-
ing methods [2, 8, 15] to web page clustering: hierarchi-
cal (agglomerative and divisive), partitioning (probabilistic,
k-medoids, k-means), grid-based, density-based, fuzzy c-
means, Bayesian, Kohonen self-organising maps, and many
more. Many algorithms build on the standard methods
by using web or document specific characteristics to as-
sist clustering: Suffix Tree Clustering (STC) [18] and Lingo
[10, 11] use phrases and some algorithms [17, 9] consider
the hyperlinked nature of web pages.

Current web page clustering algorithms produce cluster-
ings of low quality: many clusters are semantically mean-
ingless and the meaningful clusters are often small, miss-
ing many relevant pages, and contain irrelevant pages. The
problem is that from a textual perspective the algorithms
only use properties and statistics of pages from within the
result set. Many algorithms such as hierarchical and parti-
tioning algorithms [15] use data similarity measures [2] to
construct clusters; when applied directly to page data, the
similarity based methods are not effective at producing se-
mantically meaningful clusters.

One way of improving web page clustering algorithms
is to make better use of the textual properties of web pages.
The semantic relationships between words is very useful in-
formation; for example, synonyms, hyponyms, meronyms,
etc. [4]. WordNet [4] is a lexical reference system and is
one source of this information. However, the data in these
systems is incomplete, particularly for commercial, techni-
cal, and popular culture word usage.

An alternate source, although less accurate and less in-
formative, is to use global document analysis and term co-
occurrence statistics to identify whether terms are related or
unrelated. The number of pages in multi-term search result
sets can approximate term co-occurrence statistics. Google

distance [4] and the Rough Set based Graded Thesaurus [5]
are two techniques that use these statistics to determine term
similarity and both have been shown to be effective on var-
ious tasks, such as hierarchical word clustering [4] and web
query expansion [5].

QDC uses term relationships to provide a dramatic im-
provement in clustering performance. Specifically, QDC
uses normalized Google distance (NGD) [4]:

NGD(i, j) =
max(ln(f(i)), ln(f(j)))− ln(f(i ∧ j))

ln(M)−max(ln(f(i)), ln(f(j)))

where i and j are terms, f(t) is the approximate web fre-
quency of some term or terms, and M is the approximate
total number of pages.

Some algorithms represent pages using more advanced
models than a bag of words, but their performance is still in-
adequate. One of the best web page clustering algorithms is
STC, which uses the suffix tree model to identify base clus-
ters consisting of all pages containing one phrase. While
there are some high quality base clusters, many are too
broad and are ambiguous even within the context of the
result set and introduce many irrelevant pages into the fi-
nal clusters and degrade clustering performance. Advanced
models alone are inadequate for producing good clustering
performance. QDC uses a simple set of words model and
removes low quality base clusters using the relationship be-
tween cluster descriptions and the user’s query.

Base clusters often have poor coverage as they miss
many relevant pages. STC addresses this by merging clus-
ters using a single-link clustering algorithm [8] with cluster
overlap as the similarity measure. But cluster overlap may
merge semantically unrelated clusters, which lowers cluster
quality, unless the overlap threshold is set very high. How-
ever, this leaves many related clusters separate, which limits
cluster coverage. QDC uses cluster description similarity in
addition to cluster overlap to provide a more effective simi-
larity measure for merging clusters.

Some clustering algorithms, including single-link clus-
tering and STC, are susceptible to cluster chaining (drifting)
[19]. In a sequence of clusters, each cluster may be similar
to its immediate neighbours, but completely dissimilar from
clusters further away in the sequence. Clusters obtained by
merging such sequences are often of low quality and are not
semantically meaningful. The improved similarity measure
used for merging in QDC limits this significantly, but does
not stop it entirely. QDC solves the cluster chaining (drift-
ing) problem by making a second pass over merged clusters
and splitting those that have been joined inappropriately.

Algorithms that construct many clusters, like STC, must
select a subset (no more than about ten) to show the user,
as the user cannot comprehend too much at one time. Ex-
tended Suffix Tree Clustering (ESTC) [6], an extension of
STC, uses a cluster selection method that considers page
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coverage and cluster overlap in a heuristic hill-climbing
search with look-ahead and enhanced branch and bound
pruning. QDC improves the heuristic by additionally con-
sidering cluster quality and the number of selected clusters.

Providing the most relevant pages earlier in the results
can reduce the time users spend searching [1]. Most clus-
tering algorithms order the pages in the clusters by their po-
sition in the search results [3]. Such an ordering fails to use
the additional information about the user’s search goal, pro-
vided by the user selecting the cluster, so the most relevant
pages may not be shown first. QDC orders the pages within
each cluster according to their relevance to the cluster.

3 Algorithm - QDC

This section describes QDC, a query directed web page
clustering algorithm with five stages, which roughly match
our five key innovations.

3.1 Base Cluster Identification

A base cluster is described by a single word and consists
of all the pages containing that word. Equivalently, base
clusters are single word search refinements based on the
current search results. After standard page pre-processing,
QDC constructs a collection of base clusters, one for ev-
ery word that is in at least 4% of the pages. Using a lower
threshold will increase clustering performance at the cost of
algorithm speed.

Many base clusters are useless and only serve to con-
taminate the final clusters. Removing these useless clusters
would improve the clustering, but selecting the right clus-
ters to prune requires some guide to cluster quality. The
user’s query is the best, and often the only, specification of
the information desired by the user. QDC uses the relation-
ship between query terms and cluster descriptions as one
part of a cluster quality guide. QDC computes the query
distance of each base cluster — the distance from the query,
using NGD as defined in section 2. The query distance from
a base cluster to the query is the minimum of the NGD be-
tween the word specifying the base cluster and any query
term.

Terms with a low query distance tend to be very specific
and are often unambiguous in the context of the query, while
terms with a high query distance tend to be quite broad and
are often ambiguous, even in the context of the query. Am-
biguous clusters are often of poor quality as they combine
multiple distinct ideas of which only one is normally of in-
terest to a given user. QDC removes these low quality clus-
ters by removing clusters whose query distance is too large.
Our experiments use cutoffs of 1.5 when using full text data
and 2.5 when using snippet data. This step removes most

low quality clusters, but if the cutoff is too low, high qual-
ity clusters may be removed as well; using a higher cutoff
removes fewer clusters.

After pruning using query distance, there are still many
low quality clusters. The relationship between the pages
and the clusters can be used to further prune the collec-
tion of base clusters. The distribution of web pages tends
to follow the frequency of user interest in the page topics.
Therefore, larger clusters have a greater probability of be-
ing useful refinements and cluster size is an indication of
cluster quality. QDC removes the worst clusters according
to a measure proportional to cluster size and inversely pro-
portional to query distance. The number of clusters kept is
proportional to the total number of pages being clustered.
Keeping a lower number of clusters will increase algorithm
speed but lowers clustering performance, but if too many
clusters are kept, low quality clusters are not pruned and
may contaminate the merging process.

Removing this many clusters would normally have a
negative effect on clustering performance, but because the
query directed heuristics give a reliable guide to cluster
quality, the low quality clusters that would later contami-
nate the merging process are removed, and the performance
actually improves.

3.2 Cluster Merging

QDC constructs larger clusters by merging clusters to-
gether. Each cluster (c) is constructed from a set of base
clusters (base(c)), and a cluster is described by the word
that describes the cluster’s largest base cluster. However,
the set of pages in a cluster is not necessarily all the pages
in its base clusters. A page is only included in the cluster
if it is present in enough of the base clusters in the clus-
ter. This threshold should increase with the number of base
clusters in the cluster, but should not increase steeply. QDC
uses a log function. A cluster is a set that contains the pages
that are in at least log2(|base(c)| + 1) of the cluster’s base
clusters.

Initially there is a singleton cluster for each base cluster.
QDC merges clusters using single-link clustering over a re-
latedness graph. Single-link clustering merges together all
clusters that are part of the same connected component on
the graph. The relatedness graph has the clusters as vertices
and has an edge between any two clusters that are suffi-
ciently similar.

Previous methods use cluster content similarity and of-
ten merge unrelated clusters. Merging unrelated clusters de-
creases cluster quality by introducing irrelevant pages. The
problem is exacerbated by cluster chaining (drifting): clus-
ters that are closely related to one of the unrelated clusters
but not the others are often merged in too, bringing further
irrelevant pages with them.
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QDC defines two clusters to be sufficiently similar only
if both the cluster contents and cluster descriptions are suffi-
ciently similar. Requiring the cluster descriptions to match
in addition to the contents dramatically reduces the merg-
ing of semantically unrelated clusters and increases cluster
quality. Additionally, the cluster contents similarity thresh-
old can be significantly reduced, which allows more seman-
tically related clusters to merge (increasing cluster cover-
age).

The cluster contents are sufficiently similar if enough of
the pages in one cluster are also in the other cluster (i.e., if
there is enough overlap between the clusters):

|c1 ∧ c2|
min(|c1|, |c2|)

> 0.6

The cluster descriptions are sufficiently similar if the pair
of cluster descriptions occur together on the web signifi-
cantly more frequently than would be expected if the pair
were unrelated (i.e., if their appearances were independent):

Mf(d1 ∧ d2)
f(d1)f(d2)

> 4

Where d1 and d2 are the cluster descriptions, and f(t) and
M are as per NGD in section 2.

Decreasing either the cluster content or the cluster de-
scription similarity threshold will increase cluster coverage
at the cost of greater cluster overlap.

3.3 Cluster Splitting

Each cluster now contains at least all the base clusters
that relate to one idea; this is assured as single-link cluster-
ing merges all related clusters. But single-link clustering,
even with our improved similarity function, can produce
clusters containing multiple ideas and irrelevant base clus-
ters due to cluster chaining (drifting). Such clusters need
to be split. Interestingly, it is easier to split such a com-
pound cluster than to prevent its formation in the first place;
because the splitting can take into account the final cluster,
whereas the merging process cannot.

QDC uses a hierarchical agglomerative clustering algo-
rithm to identify the sub-cluster structure within each clus-
ter. The algorithm uses a distance measure to build a den-
drogram for each cluster starting from the base clusters in
the cluster. Each cluster is split by cutting its dendrogram
at an appropriate point — when the distance between the
closest pair of sub-clusters falls below a threshold (our ex-
periments use -2). This threshold means that any groups of
base clusters that are not tightly interconnected with each
other will be split. Using a higher threshold will lower the
split point and increase the splitting frequency.

QDC uses a distance measure with three components:
the number of paths between the two sub-clusters on the

relatedness graph of length one (onelinks), or of length two
(twolinks), and the average distance from base clusters in
one sub-cluster to base clusters in the other sub-cluster.

dist(c1, c2) = onelinks + 0.5 twolinks− avgdist(c1, c2)

avgdist(c1, c2) =

∑
b1∈base(c1)

∑
b2∈base(c2)

len(b1, b2)

|base(c1)||base(c2)|
Where len(b1, b2) is the path length between two base clus-
ters in the relatedness graph.

3.4 Cluster Selection

At this stage, QDC has a small set of coherent clusters.
However, there will still be more clusters than can be pre-
sented to the user. QDC needs to select the best subset of
the clusters to present to the user. Ideally, these clusters
should be high quality clusters that cover all the pages in
the original set with minimal overlap.

QDC uses the ESTC cluster selection algorithm [6] with
an improved heuristic, H(C), to select a set of clusters to
show the user. The ESTC cluster selection algorithm uses
the heuristic with a 3-step look-ahead hill-climbing search
to select a set of clusters to present to the user. To evaluate a
candidate set of clusters, C, the new heuristic considers the
number of pages covered by the clusters (CP ), the number
of distinct pages covered by the clusters (CD), the number
of pages not covered by any of the clusters (CO), and the
quality of each cluster (q(c)).

H(C) =

(∑
c∈C

q(c)

)
− αCO − β(CP − CD)

The new heuristic has two parameters that enable con-
trol of characteristics of the clustering: α (our experiments
use 0.2) and β (our experiments use 0.3). α controls cover-
age and increasing α will generate clusterings with greater
coverage at the cost of cluster quality. β controls overlap
and increasing β will lead to clusterings with fewer pages
in multiple clusters at the cost of page coverage.

The quality of a cluster (q(c)) controls the number of
clusters selected and places a bias towards high quality clus-
ters. Because of the logarithm, high quality clusters have
above average quality and therefore positive quality values,
whereas low quality clusters have below average quality and
therefore negative quality values.

q(c) = log2(
quality(c)

average cluster quality
)

The quality measure for a cluster is extended from the
base cluster quality measure to take the number of base
clusters into account as well as the cluster size and query
distance. The more base clusters that form a cluster, the
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greater the evidence that the cluster represents a semanti-
cally meaningful group of pages. But the increase in evi-
dence with each additional base cluster decreases. So we
need a function with a monotonically decreasing 1st deriva-
tive; QDC uses the logarithm. The query distance of a clus-
ter to the query, QD(c), is the average query distance of its
base clusters.

quality(c) = log2(|base(c)|+ 1)
|c|

QD(c)

3.5 Cluster Cleaning

Base clusters are sometimes formed from polysemous
words and therefore clusters can contain pages that cover
different topics. Since the clusters should relate to only one
topic, pages from other topics are irrelevant. QDC com-
putes the relevance of each page in each cluster and removes
irrelevant pages.

The relevance of a page to a cluster is based on the num-
ber and size of the cluster’s base clusters of which it is a
member. Page relevance varies between 0 and 1, with 0 be-
ing a page that is completely irrelevant to the cluster. Page
relevance is computed as the sum of the sizes of the clus-
ter’s base clusters of which it is a member, divided by the
sum of the sizes of all of the cluster’s base clusters.

relevance(p, c) =

∑
{b|b∈base(c)∧p∈b} |b|∑

b∈base(c) |b|

QDC proceeds to remove irrelevant pages from clusters
where two requirements are met: the page has relevance
below a threshold (our experiments use 0.1) and the page
has higher relevance in another cluster. A higher threshold
will remove additional irrelevant pages but will also remove
relevant pages, but the threshold is not very sensitive as the
second requirement limits the pages that can be removed.

Page relevance also provides a ranking on the pages with
respect to a cluster. QDC sorts and displays the pages in
each cluster according to relevance. This improves cluster
quality from the user’s perspective as any remaining irrele-
vant pages are frequently near the bottom of clusters and so
users rarely see them.

4 Evaluation

4.1 Algorithm Speed

QDC is on the order of ten times faster than STC and on
the order of one hundred times faster than K-means. QDC
achieves a significant increase in algorithm speed by prun-
ing many base clusters during base cluster construction us-
ing the new query directed cluster quality measure.

4.2 Algorithm Performance

We used 11 measurements to compare the clustering per-
formance of QDC against four other web page clustering al-
gorithms (STC, ESTC, K-means, and Random Clustering)
on eight data sets: search results of four different queries
(“salsa”, “jaguar”, “gp”, and “victoria university”) using
both full-page and snippet data. The queries are of vary-
ing clustering difficulty. The simplest is “salsa”, which has
two distinct clusters (both large) and few outliers. “jaguar”
is more challenging with five distinct clusters (one large,
three medium, and one small) and some outliers. “gp” is
harder with five distinct clusters (two large, and three small)
and many outliers. “victoria university” is the hardest with
five very similar clusters (two large, one medium, and two
small) and few outliers.

We compared the algorithms under an external evalu-
ation methodology using a gold standard method [16, 7].
The method uses a rich ideal clustering structure and QC4
measurements (quality and coverage) [7], as this is well
suited for web page clustering evaluation. The QC4 mea-
surements provide a fair measure of clustering performance
as they do not have any bias towards particular clustering
characteristics. In particular the clustering granularity may
be coarse or fine; the clusters may be disjoint or the clus-
ters may overlap, so that the same page may appear in sev-
eral clusters; the clustering may be “flat” so that all clusters
are at the same level, or the clustering may be hierarchical
so that lower-level clusters are sub-clusters of higher level
clusters. Additionally, the QC4 measurements do not have
the problems that other measurements have with extreme or
boundary case clusterings, such as the extreme case of hav-
ing all pages in one large cluster. On actual clusterings the
QC4 measurements are also more expressive, as they give
random clusterings much lower performance: the informa-
tion capacity of the measurements is larger as the range of
informative values is larger. The unreliability of precision
and recall can be seen in the experiments where the recall
measure gives a higher ranking (almost 60%) to the random
clustering than to one of the clearly better algorithms.

In addition to QC4 measurements, we present the stan-
dard precision, recall, entropy, and mutual information mea-
surements [16, 7] to provide further evidence for the results.
All measurements come in both average and cluster-size
weighted varieties (except mutual information for which av-
eraging is not applicable), providing 11 measurements in to-
tal. Average measurements treat all clusters as equally im-
portant, while weighted measurements treat larger clusters
as more important. Note that there is a trade-off between
different measurement pairs: quality vs coverage, precision
vs recall, and entropy vs recall. Mutual information pro-
vides a single measure that combines both aspects. For all
measurements, higher is better, except entropy, for which
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Improvement Over Random Clustering(A) (B)

(C) (D)

Figure 1. Full Text Results Averaged Over All Data Sets: (A) Combined QC4 Measure, (B) Individual
QC4 Measures, (C) Precision and Recall, (D) Entropy and Mutual Information

lower is better.

On average QDC performs substantially better than the
other algorithms. Figure 1 shows that for full text data, on
average, QDC outperforms all of the other algorithms on all
measurements by convincing margins. Figure 1 (A) shows
the overall percentage improvement each algorithm makes
over the random clustering using the combined QC4 mea-
sure 1

2 (H(AQ,AC)+H(WQ,WC)), where H is the Har-
monic Mean, AQ is Average Quality, AC is Average Cover-
age, WQ is Weighted Quality, and WC is Weighted Cover-
age.

A more detailed investigation of all test cases shows
that QDC was almost universally better than the other al-
gorithms. In 40 of the 44 full text test cases (11 measure-
ments on each of 4 data sets), QDC was significantly better
than all the other algorithms. In the four cases where QDC
was worse, QDC had second best performance. The four
cases were for the “salsa” data set, which was the easiest
search as all algorithms performed comparatively well on
this data set. In all cases where QDC performed worse, the
advantage of the other algorithms was very marginal (typ-
ically a few percent). Furthermore, when considering the

trade-offs, it was clear that QDC performed better overall.
When QDC had slightly worse average and weighted preci-
sion and entropy than STC, it had significantly better aver-
age and weighted recall and would be significantly better on
a combination score that balanced both factors in the trade-
off.

We also evaluated the performance of QDC against the
other algorithms at clustering just snippet data. Figure 2
shows the 11 measurements averaged across the four data
sets and shows the percentage improvement each algorithm
makes over the random clustering. The results show that
QDC offers a very large and significant improvement in
performance over other clustering algorithms. QDC has
better performance in all but the unreliable recall measure-
ments (where QDC is slightly outperformed by K-means),
but QDC does significantly better on precision and entropy
and would be significantly better on a combination score
that balanced both factors in the trade-off.

As with the full text, QDC was almost universally bet-
ter than the other algorithms on the snippet data sets. In
38 of the 44 snippet test cases, QDC was significantly bet-
ter than all the other algorithms. In five of the six cases
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(A) (B)

(C) (D)

Figure 2. Snippet Results Averaged Over All Data Sets: (A) Combined QC4 Measure, (B) Individual
QC4 Measures, (C) Precision and Recall, (D) Entropy and Mutual Information

where QDC was worse, QDC had second best performance.
Four of the cases were for weighted recall, a particularly un-
reliable measure that often gave better performance to the
random clustering than to other algorithms. The other two
cases were the coverage for the “salsa” data set. In all six
cases the coverage or recall were only slightly worse (a few
percent), but the quality, precision, and entropy were much
better (twice as good in five of the six cases).

4.3 Stage Performance and Sensitivity

We conducted experiments to discover the relative im-
portance of each of the five innovations, which roughly cor-
respond to the five stages of the algorithm. Each innovation
and stage of the algorithm individually has a positive effect
on clustering or algorithm performance, though not as much
as the combination of all five.

The query directed cluster quality guide has a large im-
pact on performance. The pruning it enables in the first
stage of the algorithm dramatically improves algorithm
speed and clustering performance. Using the cluster de-
scription similarity in the second stage significantly im-

proves both cluster quality and cluster coverage. The new
cluster splitting method in the third stage solves the clus-
ter chaining (drifting) problem and improves cluster qual-
ity; we independently verified this by applying the cluster
splitting method to synthetic test cases, including cases that
exhibited cluster chaining or drifting.

The improved heuristic of the fourth stage improves clus-
ter selection speed significantly over ESTC and makes far
better selections. The improvement to the heuristic is an
additional result of the query directed cluster quality guide.
The ranking method used in the final stage improves cluster
quality, but does not contribute much to the external eval-
uation, as the ordering is not taken into account. We con-
ducted an independent analysis of the ranking method and
found that most of the pages that were hurting cluster qual-
ity were placed very close to the bottom of the cluster rank-
ings; when sorted by search position, they were distributed
randomly throughout the cluster rankings.

The heuristics in QDC use quite a number of parame-
ters. For the experiments above, we did minimal tuning of
the parameters on one of the eight data sets. We ran fur-
ther experiments to explore the sensitivity of the results to
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the parameter values and found that with one exception all
parameters were able to be shifted in either direction by at
least 20% without making more than a ±2% difference in
clustering performance. The query distance threshold in the
first stage of the algorithm was more sensitive: shifting this
by 20% could make up to a ±6% difference in clustering
performance. This is a further indication of the importance
and effect of query distance in QDC. It may be worth tuning
this parameter.

4.4 Real World Usability

The results of the external evaluation are impressive, but
the real test of a web page clustering algorithm is end user
usability. While we acknowledge a formal user study would
best confirm the results from the external evaluation, at this
stage, we can only provide an informal analysis and com-
parison with other clustering algorithms. The analysis used
the same four queries as the external evaluation (“salsa”,
“jaguar”, “gp”, and “victoria university”) and indicates the
results from the external evaluation may have underesti-
mated the real world usability and performance of QDC.
The remainder of this section presents the informal analysis
of the “jaguar” query (the results were similar for the other
queries).

Table 1 shows the cluster names and number of pages
in each cluster produced by QDC, K-means, ESTC, Lingo,
and Vivisimo [14] for the search “jaguar”, sorted by size.
STC (due to result similarity with ESTC) and Random
clustering (due to its obviously poor performance) are ex-
cluded here, but were included in our analysis. Lingo results
are from http://carrot.cs.put.poznan.pl and Vivisimo from
http://vivisimo.com. Unlike the other algorithms, Lingo
and Vivisimo clustered snippets instead of full-page data
and used different data sets of 200 and 228 pages respec-
tively. We made several minor changes to the Lingo and
Vivisimo clusters: normalizing cluster sizes to account for
the different data set sizes, and truncating overly long clus-
ter names. For Lingo, we display only the ten largest clus-
ters of twenty-five.

An informal analysis of the clusters produced by the al-
gorithms shows that QDC finds larger, broader clusters such
as “Car”, while the other algorithms find smaller more spe-
cific clusters such as “Locate a Used Car” and “Jaguar Auto
Parts”. A problem with capturing topics that are more spe-
cific than necessary is that topics of interest to some users
may not be covered at all. Showing broader topics both
maximizes the probability of a user being able to refine their
query and simplifies the user’s decision process. The deci-
sion process is simpler as there are fewer choices, and it is
less likely that there are multiple relevant choices. While
the smaller clusters that relate to sub-topics of “Car” are
valid and semantically meaningful, they are better left for

Table 1. Clusters for “’jaguar’
QDC K-means ESTC
Car 109 Include 115 Car 56
Cat 48 Car 22 OS 10 33
Other 40 OS 17 Panthera onca 21
Apple 35 Free 16 Online 9
Atari 18 Largest 14 Pictures 9

Type 13 System 8
Atari 12 Racing 7
Service 12 Prices 7
Panthera 9 Auto 7

Wildlife 7

Lingo Vivisimo
Other 68 Club 48
Locate a Used Car 29 Parts 46
Mac OS Jaguar 24 Jaguar Cars 41
Cat the Jaguar 20 Photos 32
Jaguar Auto Parts 18 Classic 16
Safety Information 16 Animals 7
Jaguar Club 15 Mark Webber 7
Home Page 13 Maya 5
Official Web 13 Enthusiast 4
Amazon.com Books 11 Panthera onca 4

refinements of a more specific search, for instance, “jaguar
car”. With “jaguar”, there are more obvious refinements
that should be made first, and they are exactly those cap-
tured by QDC.

The informal analysis also shows that QDC finds fewer
semantically meaningless clusters compared with the other
algorithms. For instance, QDC found none when clus-
tering “jaguar”, whereas K-means found three (“include”,
“free”, and “service”), ESTC and Lingo each found two,
and Vivisimo found one.

The informal analysis also indicates that the usability
and performance of QDC is even better than is shown by
the external evaluation, because the evaluation did not pe-
nalise the creation of overly specific clusters since the gold
standard included them. What the external evaluation does
show is that of the clusters produced by each algorithm,
those produced by QDC had fewer irrelevant pages and cov-
ered additional relevant pages.

5 Conclusions and Future Work

This paper has presented QDC, a new query directed
web page clustering algorithm that has five key innovations.
Firstly, it identifies better clusters using a query directed
cluster quality guide that considers the relationship between
a cluster’s descriptive terms and the query terms. Secondly,
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it increases the merging of semantically related clusters
and decreases the merging of semantically unrelated clus-
ters by comparing the descriptions of clusters in addition to
comparing the overlap of page contents between clusters.
Thirdly, it fixed the cluster chaining (drifting) problem us-
ing a new cluster splitting method. Fourthly, it chooses bet-
ter clusters to show the user by improving the ESTC cluster
selection heuristic to consider the number of clusters to se-
lect and cluster quality. Finally, it improves the clusters by
ranking the pages according to cluster relevance.

The gold standard evaluation used QC4 measurements of
cluster quality and cluster coverage, and the standard mea-
surements of precision, recall, entropy, and mutual infor-
mation on eight data sets (four queries using full text data
and four queries using snippet data) to show that QDC pro-
vides a substantial improvement over Random, K-means,
STC, and ESTC clustering algorithms. Additionally, an in-
formal usability evaluation showed that QDC performs very
well when compared with Random, K-means, STC, ESTC,
Lingo, and Vivisimo and the gold standard evaluation may
have underestimated the performance of QDC.

While the results are already very impressive, QDC only
considers single words; STC, Lingo, and other clustering
algorithms have shown that using phrase information can
provide a dramatic improvement. One obvious direction for
future work is to extend QDC to use phrases rather than
just words. Another direction for future improvement is to
consider multiple terms from the cluster descriptions when
merging clusters instead of just considering the most de-
scriptive term.
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