
Improving Web Clustering by Cluster Selection

Daniel Crabtree, Xiaoying Gao, Peter Andreae
School of Mathematics, Statistics and Computer Science

Victoria University of Wellington
New Zealand

daniel@danielcrabtree.com, xgao@mcs.vuw.ac.nz, pondy@mcs.vuw.ac.nz

Abstract

Web page clustering is a technology that puts semanti-
cally related web pages into groups and is useful for catego-
rizing, organizing, and refining search results. When clus-
tering using only textual information, Suffix Tree Cluster-
ing (STC) outperforms other clustering algorithms by mak-
ing use of phrases and allowing clusters to overlap. One
problem of STC and other similar algorithms is how to se-
lect a small set of clusters to display to the user from a very
large set of generated clusters. The cluster selection method
used in STC is flawed in that it does not handle overlap-
ping clusters appropriately. This paper introduces a new
cluster scoring function and a new cluster selection algo-
rithm to overcome the problems with overlapping clusters,
which are combined with STC to make a new clustering al-
gorithm ESTC. This paper’s experiments show that ESTC
significantly outperforms STC and that even with less data
ESTC performs similarly to a commercial clustering search
engine.

Keywords: web clustering, cluster selection

1. Introduction

The amount of information on the Internet is growing at
an enormous rate, and finding relevant information is be-
coming increasingly difficult. Current search engines allow
a user to retrieve pages that match a search query, but the
number of results returned by a search engine is often huge,
and many of the results may be irrelevant to the user’s goal.
Search engines attempt to order the results to present pages
that are more useful earlier, but the user will generally need
to refine their search by adding to or changing the query to
filter out the irrelevant results. The large ordered list of re-
sults provides little assistance to the user in this difficult
query refinement process — the user may need to retrieve
and scan many of the pages to determine the topics of irrel-
evant pages that need to be excluded by the refined query.

A promising technique to address this problem is to orga-
nize the result set into clusters of semantically related pages
so that the user can quickly overview the entire result set,
and can use the clusters themselves to filter the results or
refine the query.

Many clustering algorithms have been developed includ-
ing K-means [5], Hierarchical Agglomerative clustering [1],
and Suffix Tree Clustering (STC) [11]. When using only
textual information (as opposed to also using additional in-
formation such as hyperlink information [8, 3]) for cluster-
ing, Zamir [10] has shown that STC outperforms other al-
gorithms. The main advantages of STC over other cluster-
ing algorithms are that it uses phrases rather than words,
and that it allows clusters to overlap.

Zamir [10] has found that using the full text of Web
documents for clustering has better performance than us-
ing snippets returned by search engines, albeit at the cost
of a large increase in processing time. However, using full
text, STC returns far too many clusters. For example, using
the first 300 documents (210 after removing pages without
snippets, 404 errors, etc.) from a Google search on “jaguar”,
STC creates about 3000 clusters (compared to about 40
clusters using snippets), which is not very useful to the
user since the user could not possibly handle so many clus-
ters. One solution is to apply a score function to all clus-
ters and only return the top clusters with high scores. How-
ever, neither the score function in [11], nor the slightly more
advanced score function in [10] handle overlapping docu-
ments in clusters properly. These score functions work rea-
sonably well when using only snippets, but when using full
text the returned clusters are often dominated by closely
related clusters that cover the largest topic. For example,
among the top ten clusters for the “jaguar” data set, six
of them are “cars” and the same documents appear many
times, but many documents in other topics do not appear at
all.

We addressed this problem by developing a new score
function and a cluster selection algorithm to filter the clus-
ters to maximize topic coverage and reduce overlap. Our

Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI’05)

0-7695-2415-X/05 $20.00 © 2005 IEEE

new method, called ESTC (Extended Suffix Tree Cluster-
ing) significantly reduces the number of the clusters and
heuristically determines and returns the clusters that should
be the most useful to the user. This paper’s experiments on
clustering Google search results show that the new method
ESTC outperforms STC and that ESTC is comparable to the
commercial clustering search engine Grokker [2].

The rest of this paper is organized as follows: after de-
scribing the background (including a description of STC),
the paper introduces the new score function and the clus-
ter selection algorithm, then presents the experimental re-
sults, the conclusion, and directions for future work.

2. Background

This section first introduces the three stages of Suffix
Tree Clustering (STC): document cleaning, building the
suffix tree, and clustering. Then some of the recent improve-
ments to STC are reviewed.

2.1. Three Stages

The document cleaning stage for most text-based docu-
ment clustering algorithms is very similar. The HTML tags,
punctuation and other similar non-informative text are re-
moved; a set of stop words containing very common and
uninformative words such as “the”, “it” and “on” are re-
moved; stemming is applied to reduce words to their root
form, for example, “computer”, “computing”, “compute”,
“computers” are all changed to the root word “compute”.
In STC, the final step of this stage is to break down docu-
ments into phrases using standard sentence terminators such
as full stops or exclamation points, and the location of sur-
rounding HTML tags.

In the second stage, a suffix tree is created using the
phrases in the documents (an example is shown in figure
1). The suffix tree is used to construct base clusters - sets
of documents that contain at least one phrase in common.
Each node in the suffix tree corresponds to a phrase, and
each base cluster corresponds to a node on the suffix tree.
For example, node A in figure 1 is the base cluster that rep-
resents documents containing the common phrase “the dog”
and this base cluster contains documents 1 and 2.

In the third stage, a single-link clustering algorithm is
used to combine the base clusters to form the output clus-
ters. A link is added to connect two base clusters if they have
sufficient documents in common — if, for both clusters, the
fraction of documents in the cluster that are also in the other
cluster is greater than a constant threshold (the similarity
constant), then the two base clusters are connected by a link.
The linked base clusters form a graph and a graph algorithm
is run to find all the connected components. Each connected
component consists of a set of base clusters whose union

Documents
1) the dog the cat
2) the dog ran
3) the cat ran

do
gthe rancat

th
e

ca
t ran

th
e

ca
t ran ran

2,3

1 2

1 2 3

1dog cat

ran
3

1

Suffix Tree

A

Figure 1. Suffix Tree

forms the output cluster. A scoring method is applied and
the high scoring clusters are returned. More detail and dis-
cussion of the STC algorithm can be found in [10].

2.2. Recent Improvements

STC finds clusters based on the common phrases shared
by documents. A suffix tree is a very efficient way to iden-
tify common phrases in documents, but suffix trees suffer
from large memory requirements and poor locality char-
acteristics. Suffix arrays [4], which have recently been ap-
plied to clustering, are similar to suffix trees and perform
the same function, but have significantly lower memory re-
quirements. Other improvements to aspects of the original
STC algorithm have been made, for instance, SHOC (Se-
mantic, Hierarchical, Online Clustering) [12] extends STC
to handle oriental languages such as Chinese and intro-
duces a mathematically well founded orthogonal clustering
method that improves the STC method. Clustering perfor-
mance can also be improved further by using other types of
information such as hyperlink information [9].

3. ESTC: Extended Suffix Tree Clustering

The final step in the third stage of STC is to use a scor-
ing function to select the clusters to output to the user. How-
ever, the current scoring function has problems and docu-
ment overlap between clusters is not handled appropriately.
This paper addresses these problems by developing a new
score function and a new cluster selection algorithm. The
cluster selection algorithm will be evaluated using STC, but
could equally well be applied to the other clustering algo-
rithms.

3.1. The current scoring function and its problem

Each base cluster is assigned a score based on the length
of the common phrase and the number of documents in the

Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI’05)

0-7695-2415-X/05 $20.00 © 2005 IEEE

base cluster. In [11], the score is defined as s = |D| ·f(|P |)
where |D| is the number of documents in the base cluster,
|P | is the length of the common phrase, and f(|P |) is de-
fined as follows:

f(|P |) =

0.5 if |P | = 1
|P | if 1 < |P | ≤ 5
6 if |P | > 5

Some implementations [10] weight this score by the sum
of the term frequency multiplied by the inverse document
frequency for each word; adding this extra weight is likely
to be beneficial. For simplicity this weight is not used in this
paper’s testing, and the score is defined as in [11]. The score
of a cluster is the sum of the scores of the base clusters con-
tained in the cluster.

Our investigation shows that the score works fine for
the base clusters but simply summing them up to form the
score of a merged cluster is problematic — the score func-
tion over-counts the documents in overlapping base clus-
ters, causing clusters formed by merging a large number of
similar base clusters to be unreasonably favored. Since clus-
ters are formed by merging base clusters with a high over-
lap, this over-counting is rampant. For example, if a cluster
is formed from a large number of very similar base-clusters,
then the score of the combined cluster will be very high,
even though it is not significantly better than any one of the
base clusters. This can lead to the selection of small clusters
and clusters relating to a single dominant topic for output,
while other less dominant topics are completely left out.

3.2. A new scoring function

To address the overlapping problem between base clus-
ters, the score of each base cluster is split among the doc-
uments it contains: for a base cluster with score s contain-
ing |D| documents, each document in the base cluster is al-
located s

|D| , which is the same as f(|P |) above. Then for a
merged cluster, the score of a document is the average of the
base scores it was allocated for the base clusters that form
the merged cluster. The score of a merged cluster is the sum
of the scores of its documents.

This new score function depends on the number of dis-
tinct documents in the cluster rather than the number of base
clusters. Using this new score function to select the top n
clusters provides better document coverage as demonstrated
in the experiments in Section 4.

3.3. Cluster Selection Algorithm

The new score function can be used directly in selecting
output clusters but the results are not fully satisfactory —
the score function addresses the overlap between base clus-
ters, but not the overlap between output clusters. The next

step is to develop a cluster selection algorithm to search for
the n clusters of most use to the user. Ideally the best n clus-
ters should match the top n topics in the set of documents.
However, the set of topics is external information that is not
available to the clustering algorithm. The algorithm there-
fore uses the following heuristic to guide the search: the
most useful set of clusters have minimal overlap and max-
imal coverage, so that the clusters are as distinct as pos-
sible (so users do not have to sift through the same docu-
ments multiple times) and most of the documents should be
present (covered) in the clusters.

3.3.1. Heuristic The problem can be formulated as a
heuristic search over the space of all sets of n or fewer clus-
ters, with a heuristic function H = D − β(C − D) where
C is the sum of the sizes of the clusters, and D is the num-
ber of distinct documents. D represents the coverage
of the solution, and C − D is the number of overlap-
ping documents in the solution. β is a constant used to bal-
ance the trade off between overlap and coverage. If
β = 0, then there is no penalty for overlap and a clus-
ter may be considered as long as it has distinct pages that
are not already in the solution. For β = 1, a cluster is con-
sidered only if more than 50% of its documents are distinct.
As β → ∞, the percentage of documents that must be dis-
tinct approaches 100%, that is, no overlap is allowed. Based
on our experiments, β in the range of 1 − 2 has good per-
formance and β = 1 is used in this paper’s final evalua-
tion.

3.3.2. Incremental Search and Look-ahead Ideally, the
heuristic would be maximized by an exhaustive search that
considered all combinations of n or fewer clusters. But
an exhaustive search of all solutions is too expensive and
since this heuristic only approximates the desired proper-
ties, an incremental search algorithm is used. The algorithm
approximately maximizes the heuristic by starting with an
empty set of clusters and extending that solution incremen-
tally (adding one cluster in each step). In each step, a k-step
look-ahead is used to select the cluster to be added to the
current solution.

Simply selecting the best cluster (the one that adds the
most to the heuristic value of the current solution, with
ties broken by the scores of the clusters) at each step cor-
responds to a greedy search, which is equivalent to using
0-step look-ahead. However, the best cluster at the current
step may not be the best selection in the long term because
it may eliminate the possibility of adding other clusters that
would make a better solution. In each step, to avoid mak-
ing bad short term decisions, the algorithm looks ahead sev-
eral steps before committing to a choice for the current step
and adding the selected cluster to the current solution. The
look-ahead is implemented using a depth limited, branch
and bound search from the current solution. The depth limit

Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI’05)

0-7695-2415-X/05 $20.00 © 2005 IEEE

specifies the number of steps of look-ahead. A k-step look-
ahead considers all possible 1, 2, ..., k+1 cluster extensions
to the current solution, and the best cluster of the best ex-
tension is chosen to be added to the current solution.

The cluster selection algorithm was tested using different
amounts of look-ahead and the results were compared. The
results in figure 2 (expressed in terms of F-measure defined
in section 4.1) show that some look-ahead is clearly worth-
while, but there is no advantage in using larger amounts of
look-ahead. Note that there is a large time cost when us-
ing three step or greater look-ahead — 3-step look-ahead
increased computation time to over an hour, in contrast to
less than a second in all cases with less look-ahead. The fi-
nal experiments use a two step look-ahead.

Figure 2. Performance with varying steps of
look-ahead

3.3.3. Pruning A number of techniques are used to fur-
ther improve the efficiency of the cluster selection algo-
rithm. In order to reduce the search space, the clusters are
sorted by their score and the clusters whose score is too
low are removed. The cut-off threshold depends on the to-
tal number of clusters, the cluster scores, and the number of
clusters expected in the solution.

A more sophisticated pruning technique that incorpo-
rates branch and bound pruning is used to reduce the search
space further. Branch and bound pruning is implemented
by pruning any branch that cannot possibly influence the fi-
nal solution; determined by comparing the best known ex-
tension (the one that adds the most to H) against the maxi-
mum possible extension from the current branch. The max-
imum possible extension is an upper bound on the exten-
sion from the current branch and is computed under the as-
sumption that there is no overlap between the partially con-
structed extension and future extensions.

After each step, the clusters are re-ordered first by the in-
crease in H from adding the cluster to the current solution,

then secondarily by cluster score. In the search algorithm,
the most costly atomic operation is computing the intersec-
tion between a cluster and the current extension to the cur-
rent solution. Due to the constraints imposed by the order-
ing, many branches can be pruned without computing the
intersection, some branches can be pruned without any fur-
ther consideration, and permutations can be automatically
eliminated.

3.3.4. Cluster Selection Example Figure 3 shows a set of
4 clusters: A, B, C, and D. A, B, and C are disjoint and D
overlaps with them. The numbers show the number of pages
in each region and clusters A, B, C, and D have 35, 34, 33,
and 60 pages respectively. In the following examples, the
cluster selection algorithm uses β = 1, which means a clus-
ter is considered for addition to the current solution only if
more than 50% of its documents are distinct.

15 20

14

13

20

20

C

A

B

D

Figure 3. Cluster Selection Example

In the case where there is no look-ahead, the search starts
with an empty current solution {}. When picking the clus-
ter for the first extension, there is no need to even consider
A, B, or C, since the clusters are ordered as D, A, B, C, and
the first cluster D is the best. Once D is added to the current
solution, the search ends and the final solution {D} is just a
single cluster. No further step is taken to add any other clus-
ters, as all clusters decrease H when added to current solu-
tion {D}. However {D} is not the optimal solution: {A, B,
C} is superior because it has more coverage. {A, B, C} can
only be found by using look-ahead.

With 1-step look-ahead, in order to select the first clus-
ter, all possible combinations of 1 or 2 clusters are consid-
ered as extensions to the current solution {}. The extensions
considered are: {D}, {D, A}, {D, B}, {D, C}, {A}, {A, B},
{A, C}, {B}, {B, C}, and {C}. The best extension is {A,
B}, therefore cluster A (because it is better than B) is se-
lected as the first cluster to be added to the current solu-
tion. Similarly in the second step, the extensions {B}, {B,
C}, {B, D}, {C}, {C, D}, and {D} are considered and clus-
ter B is selected from the best extension {B, C} to be added

Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI’05)

0-7695-2415-X/05 $20.00 © 2005 IEEE

to the current solution, giving a current solution of {A, B}.
In the third step, the extensions {C}, {C, D}, and {D} are
considered and cluster C is selected from the best extension
{C} to be added to the current solution. As D is the only
cluster left and adding D to the current solution would de-
crease H , the algorithm terminates and the final solution is
{A, B, C}.

Pruning has made the algorithm more efficient and due
to pruning much fewer extensions are considered. In step
1, the clusters are ordered as D, A, B, C and the exten-
sions considered are {D}, {D, A}, {D, B}, {D, C}, {A},
and {A, B}. Once {A, B} is identified as a better extension
to the current solution than {D}, there is no need to con-
sider {A, C} since there is no way this could exceed {A,
B} due to the ordering and the lack of overlap between A
and B (if there were any overlap between A and B, {A, C}
would be considered). For similar reasons, {B} and {C} do
not need to be considered as there is no way they could out-
perform A. A is then selected and added to the current so-
lution {}. If 2 step look-ahead were used, there would be
even more pruning. For example, although {D, A} is con-
sidered, it is worse than D, so the branch is pruned and {D,
A, B} and {D, A, C} would not even be considered.

In step 2, the current solution is {A} and the remain-
ing clusters are reordered as B, C, D: due to the overlap be-
tween D and the current solution {A}, D adds at most 20
to H , whereas B and C add at most 34 and 33 respectively.
Once the extensions {B} and {B, C} have been considered,
there is no need to consider any other extensions since these
cannot outperform {B, C}. B is then selected and added to
the current solution. In step 3, D is eliminated during the or-
dering process because of its overlap, so C is added to the
current solution {A, B} without considering {D} explicitly.
The final clustering and solution is thus {A, B, C} and only
9 extensions are considered, compared to 19 without prun-
ing.

4. Experiments

4.1. Evaluation method

We evaluated ESTC by comparing its performance
against three other algorithms. The performance was mea-
sured using a gold-standard approach [6] in which the
clustering from the algorithm is compared to a manu-
ally constructed ideal clustering in which each ideal clus-
ter corresponds to a topic. The topics in the ideal clustering
should correspond to the highest level topics in a topic hi-
erarchy. For example, in a search for ’jaguar’, topics may
include ‘car clubs’, ‘car parts’, ‘car dealers’, and ‘ani-
mals’; the highest-level topics assigned for these should be
‘car’ and ‘animal’.

The evaluation measure was based on precision and re-
call [7] – two standard evaluations methods used in infor-
mation retrieval and information extraction. Precision mea-
sures how accurately the clusters from the algorithm repre-
sent the topics in the ideal clustering, and recall measures
how many documents in the ideal clustering are covered by
the clusters from the algorithm. The precise formulation of
the measures is given below.

Each cluster from the algorithm is labeled with the topic
of which it has the largest number of documents. Let C be
the set of clusters from the algorithm, and T be the set of
topics from the ideal clustering. Ct ⊂ C is the set of clus-
ters that are labeled with a particular topic t ∈ T .

The precision P (c) of a cluster c ∈ C is given by

P (c) =
maxt∈T {|Dc,t|}

|Dc|
and the recall R(t) of a topic t ∈ T is given by

R(t) =
|⋃c∈Ct

Dc,t|
|Dt|

where Dc is the set of pages in cluster c, Dt is the set of
pages in topic t, and Dc,t is the set of pages in cluster c that
are labeled with topic t.

The overall precision P and recall R of a clustering are
the average of the individual cluster precisions and topic re-
calls weighted by the size of each cluster and each topic re-
spectively:

P =
∑

c∈C P (c)|Dc|∑
c∈C |Dc|

R =
∑

t∈T R(t)|Dt|∑
t∈T |Dt|

The standard F-measure F is used as the overall measure
of how well the clustering matches the ideal clustering:

F =
2PR

P + R

The Google search results used for evaluation often con-
tain some irrelevant documents which are noise and really
should not be in the search results. These documents typi-
cally form several topics with very small sizes — less than
3. For our evaluation measure, very small topics that con-
tain less than 4% of all documents are excluded from com-
putation of the overall recall R.

An example is given in figure 4. X and Y are topics, A, B,
and C are clusters, and the numbers specify the number of
documents in each region (the documents outside topics X
and Y are in very small topics that are excluded from com-
putation of overall recall R). It is clear that clusters A and B
represent topic X and cluster C represents topic Y. The pre-
cision of the clusters and the recall of the topics can be com-
puted as shown in figure 4 and from these it is found that

Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI’05)

0-7695-2415-X/05 $20.00 © 2005 IEEE

overall precision is 70.83%, overall recall is 50.00%, and
F-measure is 58.62%.

25

10

25 10
15 15

10

40 20

X
Y

A B

C

Cluster Precision

A 35/45

B 25/50

C 25/25

Topic Recall

X 50/90

Y 25/60

Figure 4. Evaluation Example

4.2. Comparison between ESTC and STC

ESTC was tested by clustering Google search re-
sults. Two test data sets were created: the search results
for “jaguar” and the search results for “salsa”. All the doc-
uments were retrieved and each document was manually
assigned to a topic. The salsa documents were quite dif-
ficult to classify, which increases the margin of error
in the salsa results and this should be taken into con-
sideration when examining the results. The jaguar data
set consists of 210 documents assigned to 34 top-
ics, and the salsa set consists of 198 documents as-
signed to 21 topics (by chance, in both data sets, 171
documents and 4 topics were significant to recall eval-
uation). The data sets include the full text of the docu-
ments, not just snippets. The data sets are available online at
http://www.danielcrabtree.com/research/wi05/rawdata.zip.

Three algorithms were compared: STC, STC-NS, and
ESTC. ESTC uses both the new score function and the clus-
ter selection algorithm to select output clusters. STC-NS is
an intermediate algorithm that uses the new score function
but not the new cluster selection algorithm. The top 10 clus-
ters returned by the three algorithms were evaluated with
eight different values of the similarity constant. The results
are shown in figures 5 and 6.

The results on both data sets show that ESTC clearly out-
performs STC and STC-NS in all the similarity range except
two points in the salsa case. In the 2 cases where STC out-
performed ESTC, the recall for ESTC was higher and pre-
cision lower. A detailed analysis of the precision and recall

Figure 5. Jaguar Results

Figure 6. Salsa Results

across all results shows that ESTC significantly improves
the recall with a slight drop in precision. The best perfor-
mance in the jaguar case is achieved by ESTC with a simi-
larity constant of 0.5 and the best performance in the salsa
case is achieved by ESTC with a similarity constant of 0.8.
It can also be seen that STC-NS works better than STC most
of the time.

ESTC and STC-NS are both far less sensitive to the sim-
ilarity constant than STC. The similarity constant is based
on the overlap between base clusters and it controls the
probability of base clusters being merged; altering the sim-
ilarity constant affects the overlap between base clusters in
the merged clusters. The significantly reduced sensitivity to
the similarity constant in ESTC therefore confirms our ear-
lier hypothesis that there is a problem with the treatment of
overlap in STC and that ESTC solves the problem.

4.3. Comparison between ESTC and Grokker

Grokker [2] is a commercial visual information man-
agement framework. One of the components of the current
system is a meta search engine with clustering available at

Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI’05)

0-7695-2415-X/05 $20.00 © 2005 IEEE

http://www.groxis.com. The search results are presented as
a set of clusters. When the user clicks on one cluster, the
cluster is expanded and the documents or sub-clusters are
displayed. The clustering component of Grokker is a hybrid
of k-means and an agglomerative clustering method. The
clustering algorithm identifies and uses vectors of noun-
phrases from the page titles and search engine snippets.
Grokker finds hierarchical results by recursively applying
the algorithm to the clusters found at a given level.

To compare Grokker with ESTC, a search for “jaguar”
was performed on Grokker with it set up to obtain results
solely from Google. The clusters are organized hierarchi-
cally and each level contains a “more categories” cluster
which consists of documents that are not clustered at the
current level. These hierarchies were flattened into their top
level clusters with any duplicated documents within any
single cluster removed and the top-level “more categories”
cluster removed. The resulting clustering consisted of 9
clusters. Comparing the clusters with the manually assigned
topics, Grokker achieves 77.5% precision, 51.5% recall,
and 61.9% F-measure 1. ESTC was also tested on Google
“jaguar” search results, which is very similar to the data
set used in figure 5 except that snippets rather than full text
are used for clustering. The top 10 clusters of ESTC achieve
80.0% precision, 46.0% recall, and 58.4% F-measure which
is comparable to that of Grokker.

Note that Grokker uses both snippets and page titles for
clustering but ESTC in this test only had access to the snip-
pets. Although the ESTC method was using less data in
this test (which explains its higher precision and lower re-
call), ESTC achieved a comparable F-measure. Note that
ESTC’s performance on full text achieves a maximum 74%
F-measure as shown in figure 5, which is much better than
that of Grokker.

5. Conclusions

The paper has described ESTC — an improvement to the
Suffix Tree Clustering algorithm that uses a new score func-
tion and a new cluster selection algorithm that maximizes
topic coverage and minimizes cluster overlap. The experi-
ments showed that the clustering performance of ESTC is
significantly improved over STC. ESTC was also compared
with a commercial clustering search engine showing that
even when using less information ESTC achieves compara-
ble results.

One possible direction for future work is to further im-
prove the cluster selection method by investigating heuris-
tic functions that take account of other information in addi-
tion to cluster overlap and document coverage. One idea for

1 The test was run several times and the search results of Grokker
changes slightly each test run. Another test returned 10 clusters and
achieved 76.0% precision, 56.0% recall, and 64.5% F-measure.

the heuristic function to incorporate cluster quality infor-
mation directly, rather than indirectly through the scoring
method. There are also many other directions for improve-
ment in the STC algorithm. For example, developing a new
algorithm for the third stage of STC in which the base clus-
ters are merged.

Acknowledgements

Daniel Crabtree is supported by a Top Achiever Doc-
toral Scholarship from the Tertiary Education Commission
of New Zealand.

References

[1] R. Ali, U. Ghani, and A. Saeed. Data clustering and its
applications. http://members.tripod.com/asim
saeed/paper.htm.

[2] Groxis. Grokker - http://www.groxis.com/service/grok,
2004.

[3] J. Hou and Y. Zhang. Utilizing hyperlink transitivity to im-
prove web page clustering. In Proceedings of the Fourteenth
Australasian database conference on Database technologies,
Adelaide, Australia, volume 17, pages 49–57, 2003.

[4] K. Malde, E. Coward, and I. Jonassen. Fast sequence clus-
tering using a suffix array algorithm. In BIOINFORMATICS,
volume 19 (10), pages 1221–1226, 2003.

[5] M. Steinbach, G. Karypis, and V. Kumar. A comparison of
document clustering techniques. In KDD Workshop on Text
Mining, 2000.

[6] P. Tonella, F. Ricca, E. Pianta, C. Girardi, ITC-irst, G. D.
Lucca, A. R. Fasolino, P. Tramontana, U. di Napoli Fed-
erico II, Napoli, and Italy. Evaluation methods for web appli-
cation clustering. In 5th International Workshop on Web Site
Evolution, Amsterdam, The Netherlands, September 2003.

[7] C. J. van Rijsbergen. Information Retrieval. Butterworths,
London, 1979.

[8] Y. Wang and M. Kitsuregawa. On combining link and con-
tents information for web page clustering. In 13th Interna-
tional Conference on Database and Expert Systems Applica-
tions DEXA2002, Aix-en-Provence, France, pages 902–913,
September 2002.

[9] Y. Wang and M. Kitsuregawa. Use link-based clustering to
improve web search results. In Proceeding of 2nd Interna-
tional conference on Web Information System Engineering
(WISE2001), IEEE Computer Society, pages 115–124, De-
cember 2002.

[10] O. Zamir. Clustering Web Documents: A Phrase-Based
Method for Grouping Search Engine Results. PhD thesis,
University of Washington, 1999.

[11] O. Zamir and O. Etzioni. Web document clustering: A fea-
sibility demonstration. In Research and Development in In-
formation Retrieval, pages 46–54, 1998.

[12] D. Zhang and Y. Dong. Semantic, hierarchical, online clus-
tering of web search results. In Proceedings of the 6th Asia
Pacific Web Conference (APWEB), Hangzhou, China, April
2004.

Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI’05)

0-7695-2415-X/05 $20.00 © 2005 IEEE

