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Abstract

Finding a set of web pages relevant to a user’s information goal is difficult due to
the enormous size of the internet. Search engines are able tofind a set of pages that
match the user’s query, but refining the results of the searchis still difficult and time
consuming. Web clustering addresses this problem by presenting the user with clusters
of related pages as refinement options. Many clustering algorithms have been developed
and researchers need to be able to compare their effectiveness. The lack of a fair univer-
sal evaluation method has led to incomparable research and results. This paper identifies
the requirements for evaluating the clusters produced by a web clustering algorithm and
proposes a new method for a fair universal evaluation of clusterings to meet the require-
ments. The paper also shows how the new method can evaluate clusterings with diverse
characteristics that are not directly comparable by previous methods.
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1 Introduction

The problem facing a user searching the web is the enormous size of the internet and the difficulty of
identifying a small set of relevant web pages. Current search engines allow a user to retrieve pages
that match a search query, but the number of results returnedby a search engine is often huge, and
many of the results may be irrelevant to the user’s goal. Search engines attempt to order the results
to present pages that are more useful earlier, but the user will generally need to refine their search by
adding to or changing the query to filter out the irrelevant results. The large ordered list of results
provides little assistance to the user in this difficult query refinement process — the user may need
to retrieve and scan many of the pages to determine the topicsof irrelevant pages that need to be
excluded by the refined query.

A promising technique to address this problem is to organizethe result set into clusters of seman-
tically related pages so that the user can quickly overview the entire result set, and can use the clusters
themselves to filter the results or refine the query. There aredifferent kinds of possible clusterings of
a result set, each has a set of characteristics: the clustering granularity may be coarse, so that there
are just a few large clusters covering very broad topics, or fine, so that there are many small clusters
of very focused topics; the clusters may be disjoint and constitute a partition of the results, or the
clusters may overlap, so that the same page may appear in several clusters; the clustering may be
“flat” so that all clusters are at the same level, or the clustering may be hierarchical so that lower-level
clusters are subclusters of higher level clusters. Many clustering algorithms have been developed (eg,
K-means [8], Hierarchical Agglomerative Clustering [1], Link and Contents Clustering [12], Suffix
Tree Clustering [13], etc.) and different algorithms produce clusterings with different characteristics.

A critical requirement in the development of techniques forclustering web search results is to
be able to fairly evaluate and compare clusterings with different characteristics and hence different
algorithms. Currently used evaluation methods fail to meetthis requirement. This paper presents
a new evaluation method that meets this requirement by generalizing the “gold-standard” approach
to use a richer kind of ideal clustering and by developing newmeasures of cluster quality and topic
coverage.

The next section outlines previous methods. Section 3 specifies requirements on a universal clus-
tering evaluation method and discusses the problems with existing methods and their measurements.
Section 4 describes our proposed method and justifies why themethod meets the requirements. Sec-
tion 5 compares our method against mutual information usingsynthetic examples. Section 6 con-
cludes the research and provides direction for future work.

[3, 7, 4]

2 Previous Methods

2.1 Methodology

There are two broad methodologies for evaluating clusterings. Internal quality [9] is a model-based,
unsupervised approach that evaluates a clustering only in terms of a function of the clusters them-
selves. Internal quality is often used when there is no information about the desired output that can be
used in the evaluation. External quality [9] is a model-free, semi-supervised approach that evaluates a
clustering using external information (ie, information not available to the clustering algorithm), such
as an ideal clustering, or its effectiveness in some applications. Where there is such external informa-
tion (eg, ideal clustering of web search results), externalquality is more appropriate because it allows
the evaluation to reflect performance relative to the desired output.

1



2.2 Approaches

There are three main approaches to evaluation using the external methodology: gold-standard, task-
oriented, and user evaluation. The first two are considered by [10]. Gold-standard approaches manu-
ally construct an ideal clustering with each ideal cluster labeled with a topic, which is then compared
against the actual clustering. Task-oriented approaches evaluate how well some predefined task is
solved. A common task is search result ordering: which involves labeling pages as relevant or irrel-
evant to a topic, reordering the search results using the clusters, and then evaluating the reordered
results [13]. User evaluation approaches involve directlystudying the usefulness for users and of-
ten involve observation, log file analysis, and user studiessimilar to those carried out in the user
evaluation of Grouper I and Grouper II [13].

Task-oriented methods such as search result reordering have a bias towards the selected task.
Task-oriented methods are by definition, biased towards some task and hence biased towards cer-
tain clustering characteristics, making them poor candidates for a fair universal clustering evaluation
method. For example, search result reordering [13], has a bias towards small clusters, which tend to
have higher quality. Randomly generating a perfect clusterof five pages is much more likely than
generating a perfect cluster of fifty pages. In the extreme case of one cluster per page (singleton
clustering), the clustering is evaluated as perfect, when clearly it is not.

User evaluation methods are not reproducible as they are reliant on the users, and even the same
users are unlikely to produce identical results all the time. The results are often inconclusive and
frequently have multiple valid interpretations. The selection of users introduces significant user bias,
although this can almost be reduced to zero by using large samples, it then becomes prohibitively
costly. The lack of reproducibility, large cost, and time involved in conducting user evaluations makes
them poor candidates for a fair universal clustering evaluation method.

The most appropriate method is to use the external information about an ideal clustering to define
a gold-standard. Given an ideal clustering, the problem is how to measure a clustering against it.

2.3 Measurements

Clusterings have been evaluated using a wide variety of measurements. This section outlines those
most commonly used; their limitations will be discussed in the next section.

The rest of the paper uses the following notation:C is a set of clusters,T is a set of topics (the
clusters of the ideal clustering), andD is a set of pages.c, t, andd are individual elements ofC, T ,
andD respectively.Dc is the pages in clusterc, Dt is the pages in topict, andDc,t is the pages in
clusterc of topic t.

Purity [9] and F [8, 9, 2] are two clustering evaluation methods that are based on three standard
information retrieval [11] measures: precision, recall, and f-measure.
P (c, t) = Precision= |Dc,t|

|Dc|

R(c, t) = Recall= |Dc,t|
|Dt|

F (c, t) = F-measure= 2∗P (c,t)∗R(c,t)
P (c,t)+R(c,t)

Purity assumes that a cluster represents the topic with the highest precision. F assumes that a
cluster represents the topic with the highest f-measure.
Purity =

∑

c∈C
|Dc|
|D| maxt∈T {P (c, t)}

F =
∑

c∈C
|Dc|
|D| maxt∈T {F (c, t)}

Entropy and Mutual Information (MI) are well founded in information theory [5]. Entropy1 can
be considered an advanced version of purity, which evaluates a single cluster by considering its dis-
tribution among all topics, rather than just one topic. MI2 evaluates how closely the entire clustering

1In contrast to all other measurements considered, lower entropy is better. 0 is best, 1 is worst.
2There are also other forms of MI for a clustering.
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matches the ideal clustering.
Entropy(c) = −

∑

t∈T P (c, t)log|T |P (c, t)

MI = 2
|D|

∑

c∈C

∑

t∈T |Dc,t|log|C||T |(
|Dc,t||D|
|Dc||Dt|

)
Some methods [8] use entropy weighted by cluster size for overall evaluation, while others [9]

use MI for overall evaluation. Another information theoretic measurement for comparing clusterings
is variation of information (VI) [6], which combines MI and Entropy to define a metric on clusterings.

3 Requirements and Limitations

This section introduces the proposed requirements of a fairuniversal clustering evaluation method,
and then identifies some of the limitations with previous methods.

3.1 Evaluation Requirements

A clustering is perfect if it is identical to the ideal clustering. A clustering can fail to be perfect in
two ways, (1) some clusters may be of poor quality by way of notexactly matching ideal clusters
(topics) and (2) the clustering may not include (cover) all the pages in the ideal clustering. There is
often a trade off between these two attributes — algorithms can often be tuned to perform one well,
at the cost of the other. Different users, and different applications, will each put different weight on
each attribute depending on their needs. For instance, typical web users may place equal weight on
both; cell-phone users may want higher quality, but accept lower coverage; researchers may want
higher coverage, but accept lower quality. Therefore, goodevaluation methods must measure each
attribute separately (the measurements can be combined later to give a single application specific
measurement). Although not considered in this research, other factors (eg, computational complexity,
run time, memory requirements, etc.) should also be measured.

When considering the fairness of a clustering evaluation method, it is useful to keep two criteria
in mind. (1) An experimenters freedom to construct ideal clusterings that favor particular algorithms
should be minimized. (2) The evaluation method and measurements should not inherently favor any
particular algorithm. One way to ensure (2) is to minimize the method bias towards clusterings with
particular characteristics (cluster granularity: coarseor fine, clustering structure: hierarchical or flat,
disjoint or overlapping, and cluster size: large or small):if the bias towards the different possible
characteristics of a clustering is minimized, then so is thebias towards the algorithms that produce
those clusterings.

3.2 Limitations of Previous Methods

Previous methods use an overly constrained ideal clustering structure for their gold-standard that
allows only one ideal clustering. As clusterings can have different characteristics, there are many
equally ideal clusterings that an experimenter could pick,giving the experimenter a lot of freedom
to favor a particular method. Further, clusterings with characteristics other than those of the chosen
ideal clustering are penalized, creating method bias towards certain clusterings.

Overall measurements used by the current methods are not satisfactory. There is no well-defined
independent measure of coverage. Entropy and purity measure quality, have method bias towards
small clusters, and are maximized by a set of singleton clusters. Entropy3, F, and purity are related
to the proportion of pages in the largest topic, which can lead to very high performance for useless
clusterings (eg, a single cluster containing all pages), a form of method bias. Entropy, F, and purity
measures are weighted by cluster size, so if a great disparity between the large and small clusters
exists, these measures provide little indication of the performance of smaller clusters, creating method

3When topics have non-uniform size
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bias towards the performance of large clusters. MI, VI, and Fwrap up quality and coverage with a
single measure, making it impossible to interpret the two attributes separately. MI and VI require that
clusters and topics partition the pages, so clusters and topics may not overlap, and entropy requires
this of topics, creating method bias.

4 New Method - QC4

QC4 (Quality, Coverage, and 4 Overall Measurements) addresses the problem of an overly con-
strained ideal clustering by introducing a new, more general ideal clustering that describes all ideal
clusterings and new overall measurements are developed that fairly characterize all clusterings in
terms of quality (1) and coverage (2). The new overall measurements meet the requirements by
avoiding bias towards clusterings with particular characteristics.

4.1 A General Ideal Clustering

A general ideal clustering is a hierarchy of idealized clusters, termed topics, that is created by a
human expert based on the pages to be clustered. Pages often have many topics that naturally overlap
and that form hierarchies with different degrees of topic granularity. Because of this, the hierarchies
created should often include topics at multiple levels and the topics should often overlap to some
extent. Every possible ideal clustering of the pages shouldbe a subset of the hierarchy. Topics at
the top of the hierarchy cover very broad topics, and topics lower in the hierarchy, have progressively
finer granularity. Each subtopic is a subset of a single parent. Topics have a level defined by their
depth in the hierarchy; the topics with no parents are the top-level of the hierarchy (level 1). Topics
at any given level may overlap.

To ensure clusterings with clusters of different granularity are evaluated fairly, all pages must be
assigned topics at all levels. If a subtopic exists, pages inits parent but not in that subtopic must be
in some other subtopic of that parent. To ensure topics have sub-topics at all levels, topics without
sub-topics are duplicated at lower-levels as children of themselves. It is very unusual to have only one
topic at the top-level, if there is and there are lower-levels, remove the top-level. It is also unusual to
have particularly small topics, as topics get smaller, the impact on the evaluation accuracy diminishes
and the probability of mistakes in the topics increase.

All pages should have a topic and all topics should be non-empty. Searches often find some pages
that are very distinct and which are often completely unrelated or erroneous (ie, really should not
have been in the result set). These often do not share any sensible topic with more than a few pages;
these pages are termed outliers and are placed in a special topic, termed the outlier topic. The outlier
topic is always disjoint from all other topics and is identical at all levels. Typically, the number of
pages in the outlier topic is small.

As the general ideal clustering defines all ideal clusterings, a lot of the experimenter freedom
granted by previous methods for selecting a single constrained ideal clustering and the method bias
towards the specific selected clustering is eliminated. Theonly problem now is to define measure-
ments that fairly characterize clusterings according to the general ideal clustering.

4.2 Characterize Clusterings

QC4 assumes that a clustering algorithm generates a set of clusters (duplicate clusters can be trivially
removed). Different applications handle outliers in different ways. To avoid method bias towards
the handling of outliers, clusters predominantly containing pages from the outlier topic are excluded
from the cluster set, the topic that represents them is not considered for coverage, and they negatively
affect the quality of any remaining clusters of which they are members.
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In addition to the notation in section 2.3, the rest of the paper uses the following notation:L is
the set of levels from the topic hierarchy (eg, 1, 2, 3) andl is an individual element ofL. Cd is the
clusters containing paged, Tl is the topics at levell, Td is the topics containing paged, andT∅ is a set
containing the outlier topic.sub(t) is the set of all descendants of topict. lvl(t) is the lowest level of
topic t.

4.2.1 Basic Measurements

PrecisionP (c, t), recallR(c, t), and f-measureF (c, t) are as defined earlier. Precision provides a
measure of the probability that a cluster describes a given topic. F-measure provides a measure of
similarity between a cluster and a topic. The topic with the highest f-measure for a cluster is thus
the single most similar topic. Entropy compares a cluster against all topics and measures how close a
cluster is to a single topic by measuring how much information would be required to refine the cluster
into the separate topics it represents.

4.2.2 Cluster Quality

Cluster Quality is a measure of how closely a cluster matchesa single topic. Cluster Quality,QU ,
is measured using a modified entropy measurement,E, scaled by a measure of the information the
cluster provides about a single topic,I.
QU(c) = I(c)E(c)

The problem is that entropy does not work with overlapping topics due to over counting. Two
kinds of overlap need handling: overlap between topics at different levels, and overlap between topics
at the same level.

The overlap between levels is handled by evaluating measurements across only topics from one
level, the level that contains topics that are the most similar to the cluster. As topics within a level
typically have similar granularity, the level with the mostsimilar topics is likely to be the level with
the topic that is most similar to the cluster. So the lowest level of the topic with maximum f-measure
is used as the level of a cluster.
L(c) = cluster-level4= lvl(argmaxt∈T\T∅

{F (c, t)})
E(c) = maxt∈TL(c)

(1 + E′(c, t))
E′(c, tm) =

∑

t∈TL(c)
P ′(c, t, tm)log|TL(c)|P

′(c, t, tm)

The overlap between topics at the same level is handled by using modified precision,P ′. Due to
over counting, the sum of precision can be greater than one with overlapping topics, causing perfect
clusters to receive sub-perfect entropy. So precision is modified to cope with overlapping topics,
while preserving the property that an ideal cluster gets perfect entropy. Pages in the best topic are
treated as being in only that topic, while topics containingthe remaining pages that would normally
be over counted are normalized to counteract the over counting. The best topic,tm, is the topic that
maximizes the resulting entropy, and a nice property of thisis that a topic that overlaps with many
topics is preferred to a completely disjoint topic of the same precision.
P ′(c, t, tm) =







|Dc,t|
|Dc|

if{t = tm}
(|Dc|−|Dc,tm |)|Dc,t\Dc,tm |

|Dc|
P

t′∈TL(c)\{tm} |Dc,t′\Dc,tm | otherwise

Using the modified entropy, cluster quality measures how close a cluster is to a single topic and
allows clusters of different levels of granularity, and disjoint and overlapping topics to be handled
fairly. However, entropy does not consider all cluster quality information. Quality should only be
perfect when a cluster exactly matches a single topic. A single cluster containing pages from one

4If multiple topics maximizeF , the one with lowest level is selected.
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topic is preferable to two or more smaller clusters containing the same pages from that topic. But
perfect entropy is given to any cluster that contains purelypages from one topic. In addition, clusters
that are similar to a random selection of pages from the result set provide almost no information
beyond the un-clustered result set, and should receive nearzero quality. However, entropy is related
to the proportion of pages in the largest topic in randomly constructed clusters. To deal with these
two cases, a new measure,I, is defined to scale entropy for incorrectly handled clusters. I1 deals
with comparing cluster size and topic size, andI2 deals with randomly constructed clusters.I uses
the minimum of the two, to avoid applying both to any one cluster.
I(c) = min{1, I1(c), I2(c)}

The correlation between cluster size and topic size is related to the recall of the topic represented
by the cluster. However, assuming the user is equally likelyto desire any given topic, and will only
consider a subset of the pages in any cluster, an extra percent recall of a large topic is less likely to
benefit the user than an extra percent recall of a small topic.To address this, for any given recall, the
recall is scaled upwards in relation to the log of the topic size. Therefore, ceteris paribus, the benefit of
increasing recall by 1% in a large cluster is less than the benefit in a small cluster. To handle clusters
containing pages from multiple topics, the scaled recall isweighted by the modified precision for each
topic represented in the cluster. Using modified precision addresses the overlap between clusters at
the same level; overlap between levels is addressed by considering only topics from the clusters level.
I1(c) = maxtm∈TL(c)

{
∑

t∈TL(c)
P ′(c, t, tm)I1′(c, t)}

I1′(c, t) = 2
R(c,t)−1

R(c,t)log2|Dt|

Randomly constructed clusters are identified using a modified version of MI. When considering
disjoint topics, on average a random cluster will have a verysimilar fraction of pages from each
topic. When the fractions are the same, MI is 0, when the fractions are very similar, MI is almost
0. Therefore, MI has the desired property, but MI fails when topics overlap due to over counting.
The over counting is avoided by splitting the topics from theclusters level into a set of non-empty
disjoint regions,REG, where every page is in exactly one region. This can be visualized as the
regions of a Venn diagram of the topics. For example, if two topics overlap, there are three regions:
the intersection of the two topics, and the two set differences.
REG(c) = {r ⊆ D|(∃Tα ⊆ TL(c)(|r| > 0 ∧ r =

⋂

r′∈Tα
Dr′ −

⋃

r′′∈TL(c)\Tα
Dr′′)}

Another problem with MI is that the maximum value varies between0 and1 depending on the
topic size distribution. To solve this,I2, a variation of MI is defined, that normalizes the modified
MI by 5% of the minimum modified MI of an ideal cluster (topic) from thelevel of the cluster being
evaluated. This ensures consistent results and the5% threshold ensures that only clusters that are
very close to random or that are very small are scaled down. This is acceptable, asI2 should scale
random clusters, and although very small clusters are already handled byI1, there is no harm in
handling them again withI2; I1 is usually less thanI2 for very small clusters. The normalization
and consideration of just a single cluster allows some scaling terms and the sum over clusters to be
eliminated from the traditional MI, to produceI2′ whereD′ is eitherDc or Dt. Note: If |REG| ≤ 1
thenI2(c) is 1.

I2(c) = I2′(Dc,c)
0.05mint∈TL(c)\T∅

{I2′(Dt,c)}

I2′(D′, c) =
∑

r∈REG(c) |D
′ ∩ r|log|REG(c)|

|D′∩r||D|
|D′||r|

4.2.3 Topic Coverage

Topic Coverage is a measure of how well the pages in a topic arecovered. Topic Coverage,CV , is
measured by the fraction of pages from the topic that are present in some cluster, where each pages
contribution is weighted to reflect how well that page is covered.

A page is covered to some extent in a topic if there is a clusterthat contains the page. A page
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is covered to the extent that the best subset of clusters containing the page describe the topic, an
appropriate set of that topics children, or an appropriate set of that topics descendents by recursion.
Page coverage is thus defined recursively byPC as the maximum of: the precision of the cluster that
best describes the topic and contains that page, or the average page coverage in the children of the
topic that contain the page.

CV (t) =
P

d∈Dt
PC(d,t,1)

|Dt|

PC(d, t, l) =

P

t′∈Tl∩Td∩sub(t) max{PC′(d,t′,l),PC(d,t′,l+1)}

|Tl∩Td∩sub(t)|

PC ′(d, t, l) = maxc∈{c∈Cd|L(c)=l}{P (c, t)}
Initially this definition of topic coverage may seem unusual, this is because it does not make much

sense to talk about the coverage of some lower-level topic; when computed the overall coverage of
a clustering, only the top-level coverages are used, which inherently considers the lower-level topic
coverage by way of the recursive process. Any clustering that is an ideal subset of the topic hierarchy
is given perfect coverage, any negative alteration to a clustering decreased coverage by an amount
proportionate to the amount of degradation (eg, a page that is not present in any cluster has greater
degradation on coverage than a page that is in a cluster that poorly describes the topic containing the
page), and overlapping topics that are partially covered are appropriately penalized by averaging the
individual coverage of each.

4.2.4 Overall Measurements

Overall measurements measure the cluster quality and topiccoverage across the entire clustering.
Individual cluster quality is correctly reflected byQU , and individual top-level topic coverage is
correctly reflected byCV . The methods both fairly evaluate disjoint and overlappingtopics, and
topics of varying granularity without bias. Hierarchical and flat clusterings are considered fairly, as
hierarchical clusterings can be flattened into a flat clustering and the clusters will be evaluated fairly
as clusters of varying granularity are treated without bias. Method bias is thus minimized towards
clusterings with any of these characteristics.

There are four overall measurements that characterize a clustering — two for quality and two
for coverage. The overall quality measures consider the quality across all clusters, while the overall
coverage measures consider the coverage across all topics,as top-level topic coverage reflects the
coverage in lower-level topics.

Since topic sizes and thus desired cluster sizes can vary dramatically, cluster quality and topic
coverage are combined in two ways to reflect the characteristics of clusterings with clusters of dif-
ferent sizes, minimizing method bias towards cluster size.Average measures place equal weight on
every cluster and topic, weighted measures weight clustersand topics by their size, giving more em-
phasis to large clusters. In evaluating an web clustering algorithm for a particular application, a single
appropriately weighted combination of the four overall measurements should be used.

AQ = average quality=
P

c∈C QU(c)

|C|

WQ = weighted quality=
P

c∈C QU(c)|Dc|
P

c∈C |Dc|

AC = average coverage=
P

t∈T1\T∅
CV (t)

|T1\T∅|

WC = weighted coverage=
P

t∈T1\T∅
CV (t)|Dt|

P

t∈T1\T∅
|Dt|

In summary, the required clustering attributes (quality and coverage) are measured independently.
The bias towards particular clusterings in previous gold-standard methods has been avoided: by min-
imizing experimenter freedom and method bias by defining a new general ideal clustering that allows
all ideal clusterings to be defined simultaneously, and by minimizing the method bias in the mea-
surement of the attributes by minimizing the bias towards the different characteristics a clustering
can have. Therefore, the new evaluation method proposed meets the evaluation requirements set out
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earlier.

5 Comparison between QC4 and MI

This section compares QC4 and MI using example clustering cases shown in Figures 1 and 2. The
Venn diagrams represent the ideal clusterings by showing the topics labeled A-E, and the number of
pages in each region. There are no outlier topics. In figure 2,A is a top-level topic, with two sub-
topics, B and C. The columns show: case number, clustering description, the four QC4 measurements,
and MI. All clusters are disjoint, except in cases (2), (11) and (12). The cluster description is explained
using the following example: for ideal clustering shown in Figure 2, the clustering(3B ∩ C, 2C) 4x
(1B) would represent a cluster with 2 pages from topic C and 3 pagesfrom the intersection of topics
B and C, and 4 disjoint clusters each with 1 page from topic B.

1000 25 25 25 25

A
B C D E

AQ WQ AC WC MI
(1) (1000A)(25B)(25C)(25D)(25E) 1.000 1.000 1.000 1.000 0.268
(2) (1000A)(25B)(25C)(25D)(25E)(25B,15C,15D)0.887 0.968 1.000 1.000 0.333
(3) (900A) 0.992 0.992 0.180 0.818 0.097
(4) (900A)(5B)(5C)(5D)(5E) 0.639 0.983 0.340 0.836 0.091
(5) (107A)(10B)(10C)(10D)(10E) 0.751 0.625 0.341 0.134 0.091
(6) 1000X(1A)25X(1B)25X(1C)25X(1D)25X(1E) 0.003 0.003 1.000 1.000 0.100
(7) (1000A,25B,25C,25D,25E) 0.000 0.000 0.200 0.829 0.000
(8) (170A,5B,5C,5D,5E) 0.034 0.034 0.035 0.139 0.068
(9) (450A)(450A) 0.919 0.919 0.180 0.818 0.068

Figure 1: QC4 vs. MI

Case (1) shows a perfect clustering, all four QC4 measurements are correctly 1. But the MI
is less than one, since the maximum MI depends on the page distribution among topics. This is
unsatisfactory as there is no way to know how good a clustering is without knowing the maximum MI
as a basis for comparison. Case (2) adds a low quality clusterto the perfect clustering (1), however, MI
mistakenly evaluates (2) to be better than (1), this is due tothe overlap between the clusters which MI
does not handle. Case (2) also shows a key difference betweenQC4 quality and coverage measures.
The addition of a low quality cluster negatively affects quality, but does not affect coverage; this
is because coverage only considers the best clusters for each page and so the low quality cluster is
ignored by coverage. Comparing (3) to (4), QC4 correctly shows the characteristics as an increase
in coverage and a drop in quality, however, MI suffers in (4),the superior clustering. MI shows no
difference between (4) and (5), however, there is a significant difference in the size of the clusters and
this is shown by QC4, the weighted coverage has dropped significantly, due to the drop in coverage
of the large cluster, highlighting the importance of havingboth average and weighted measures. Case
(6) shows a singleton clustering, this correctly has almost0 quality from QC4. However, MI does
not penalize the singleton clustering enough and mistakenly shows it to outperform the reasonable
clusterings (3), (4), and (5). Case (7) has all pages in one cluster, and (8) has almost the same fraction
from each topic, which is close to a random cluster, both are bad clusterings with no information
beyond the original result set. Both QC4 and MI correctly reflects these as 0 and near 0. Comparing
(9) to (3) shows that splitting a cluster into two small clusters correctly decreases QC4 quality and
MI.
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A
B C

737

AQ WQ AC WC MI
(10) (7B, 3B

⋂

C, 7C) 1.000 1.000 1.000 1.000 0.000
(11) (7B, 3B

⋂

C)(3B
⋂

C, 7C) 1.000 1.000 1.000 1.000 0.432
(12) (7B, 3B

⋂

C, 7C)(3B
⋂

C,7C) 1.000 1.000 1.000 1.000 0.216
(13) (7B)(3B

⋂

C, 7C) 0.957 0.965 0.938 0.938 0.460
(14) (2B, 3B

⋂

C, 7C) 0.317 0.317 0.502 0.502 0.188

Figure 2: QC4 vs. MI

MI cannot handle overlapping topics or clusters and as such it fails miserably with the cases in
Figure 2. Cases (10), (11), and (12) each show one perfect clustering, and each is correctly evaluated
as perfect by QC4. But MI gives a different answer for each, and in fact, MI gives 0 to one of the
perfect clusterings, while it gives the best evaluation to anon perfect clustering (13). (10) and (11)
show that QC4 handles the perfect clusterings at different levels correctly, while (12) shows clusters
from multiple levels are handled correctly by QC4, a situation that arises frequently in hierarchical
clusterings. Cases (13) and (14) show clusters that are evaluated against lower-level topics. (13) is
correctly penalized in coverage for failing to cover the overlap in both sub-topics, while its quality is
also penalized as one of its clusters is not identical to a topic. (14) is correctly penalized in coverage
for covering only half of pages in the topics, while its quality is penalized for not purely representing
a single topic.

This comparison shows that the QC4 method significantly outperforms MI across a variety of
different synthetic conditions that simulate many of the different clustering characteristics.

6 Conclusions

This paper introduced QC4, a new evaluation method and justified why it is a fair universal clustering
evaluation method. QC4 minimizes experimenter freedom andmethod bias by generalizing the gold-
standard approach to use a more general ideal clustering that describes all ideal clusterings. QC4
introduces four new overall measurements that can universally characterize clusterings with different
characteristics (cluster granularity: coarse or fine, clustering structure: hierarchical or flat, disjoint or
overlapping, and cluster size: large or small) fairly in terms of cluster quality and topic coverage. It
is also shown that QC4 significantly outperforms MI on many synthetic test cases that cover a broad
range of clustering characteristics.

In the future, performance measurements such as computational complexity, run time, memory
requirements, etc., need consideration. Standard test data and benchmark QC4 results for existing
clustering algorithms also need to be developed.
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