
Exploiting Underrepresented Query Aspects for Automatic
Query Expansion

Daniel Crabtree
daniel@danielcrabtree.com

Peter Andreae
pondy@mcs.vuw.ac.nz

Xiaoying Gao
xgao@mcs.vuw.ac.nz

School of Mathematics, Statistics and Computer Science
Victoria University of Wellington

New Zealand

ABSTRACT
Users attempt to express their search goals through web
search queries. When a search goal has multiple compo-
nents or aspects, documents that represent all the aspects
are likely to be more relevant than those that only represent
some aspects. Current web search engines often produce re-
sult sets whose top ranking documents represent only a sub-
set of the query aspects. By expanding the query using the
right keywords, the search engine can find documents that
represent more query aspects and performance improves.
This paper describes AbraQ, an approach for automatically
finding the right keywords to expand the query. AbraQ iden-
tifies the aspects in the query, identifies which aspects are
underrepresented in the result set of the original query, and
finally, for any particularly underrepresented aspect, identi-
fies keywords that would enhance that aspect’s representa-
tion and automatically expands the query using the best one.
The paper presents experiments that show AbraQ signifi-
cantly increases the precision of hard queries, whereas tra-
ditional automatic query expansion techniques have not im-
proved precision. AbraQ also compared favourably against a
range of interactive query expansion techniques that require
user involvement including clustering, web-log analysis, rel-
evance feedback, and pseudo relevance feedback.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—query formulation; I.2.7 [Artificial
Intelligence]: Natural Language Processing—text analysis

General Terms
Algorithms, Experimentation, Performance

Keywords
query expansion, web search, global document analysis, as-
pect coverage

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’07, August 12–15, 2007, San Jose, California, USA.
Copyright 2007 ACM 978-1-59593-609-7/07/0008 ...$5.00.

1. INTRODUCTION
Users approach web search engines to find web pages that

satisfy their search goals. They specify a query to capture
the intent of their search goal and in response, the search
engine returns a result set containing the best matching
pages from its corpus. If the query does not express their
search goal well enough, the result set will contain few useful
pages, and the users have to refine their query to capture
the search goal more effectively. How the query should be
refined varies, depending on the reason why the query did
not express the search goal.

Query refinement is a time consuming process for users.
Users must look through the retrieved pages to identify the
irrelevant pages and then they must work out how to modify
their query to filter out the irrelevant results. Fortunately,
there are many opportunities for the search system to help
the user refine their query. Automatic query expansion is
an approach for improving query performance with no user
involvement by automatically modifying the user’s query.
Automatic query expansion works by addressing failures of
the search mechanism. One such failure is that search en-
gines only find pages that include the query words. Many
relevant pages may use similar words, but not exactly those
used in the query and so those relevant pages will not be
in the result set. Automatic query expansion can help iden-
tify the other relevant pages by identifying additional terms
that occur on relevant pages. These additional terms can be
identified by examining the pages that have been retrieved
by the search engine.

There are many methods of automatic query expansion
based on pseudo, blind, or ad-hoc relevance feedback. The
methods work by assuming some initial portion of the result
set is relevant and then proceeding with standard relevance
feedback methods [21]. The methods vary in several ways:
the retrieval model used, how terms are weighted, and how
to select terms. There are three common retrieval models:
the Boolean model, the vector space model, and the proba-
bilistic model. The Boolean methods are relatively simple in
their use of weighting, effectively they are limited to adding
additional query terms [11] and modifying the Boolean con-
nectives (AND and OR) between query terms [14]. The
most common term weighting method for the vector space
model is Rocchio’s method [20, 3]. Robertson and Sparck
Jones introduced four term weighting schemes for proba-
bilistic models [19, 25]. Another weighting method for the
probabilistic model is the Bayesian approach [25].

Most research on query expansion has focused on opti-

mizing the incorporation of additional terms through the
retrieval model and term weighting methods. However, the
quality of the additional terms is also very important, yet
there is little research on term selection, as evidenced by
the limited techniques for Boolean models. Terms are typi-
cally selected using local document analysis from the top N
ranked documents in the initial result set and the terms are
typically ranked using document frequency (df), term fre-
quency (tf), or term frequency inverse document frequency
(tfidf) [24]. Local document analysis has the problem that
performance only improves when the top ranking documents
are relevant. Terms can also be selected by global document
analysis by looking for words that frequently co-occur with
query terms in the whole corpus [26] or using thesauri like
Word-Net [12]. A problem with using global document anal-
ysis or thesauri based approaches is that query drift (chang-
ing the meaning of the query) increases, hurting precision.
This paper investigates improving the quality of term se-
lection, rather than on improving the retrieval model and
term weighting methods, and therefore the relatively simple
Boolean model without term weighting is used.

Search goals are frequently a composition of several as-
pects. For example, a search goal of finding possible holi-
days would have one aspect, but searching for travel agents
in Los Angeles who deal with cruises involves three different
aspects. To express their search goal as a query, users typi-
cally list one or more words for each aspect from the search
goal. The search goal aspects that are explicitly represented
in the query in this way are the query aspects.

A significant problem with web search that requires users
to refine their queries is the aspect coverage problem [4]:
the documents do not cover all the different query aspects.
In general, the more aspects a query has, the fewer docu-
ments there are in the result set that cover all the aspects.
Current search systems frequently return biased result sets
with documents that focus on one aspect of the search goal
and let other aspects take a subsidiary role or focus on an
irrelevant aspect [2]. To deal with this problem, query re-
finement methods could choose refinements that increase as-
pect coverage of queries. A benefit of this approach is that
the refinements are generated independently of whether the
original query retrieves relevant documents.

While existing automatic query expansion methods suc-
cessfully increase recall for easy queries with high precision,
they provide little benefit for hard queries with low preci-
sion. This paper investigates and develops an automatic
query expansion method to improve the precision of hard
queries by finding terms that address query aspects that are
underrepresented in the result set.

After outlining the background to automatic query re-
finement, the paper discusses the problems posed by multi-
aspect queries for current web search engines. Section 4 in-
troduces a new automatic query expansion method, AbraQ,
which identifies query aspects, identifies underrepresented
aspects that are missing from the result set, and then chooses
a suitable refinement term to add to the query. In section 5,
AbraQ is evaluated and the results show that AbraQ signif-
icantly improves the precision of hard queries on which the
underlying search system has poor performance. The eval-
uation also shows that AbraQ not only outperforms other
automatic query expansion methods, but performs compara-
bly with the optimal performance of many good interactive
query expansion methods that depend on feedback from the

user, including clustering, web-log analysis, relevance feed-
back, and pseudo relevance feedback.

2. BACKGROUND
Besides automatic query expansion, an alternative ap-

proach for improving query performance is interactive query
expansion, which involves user input, either in the form of
relevance judgments about documents as in relevance feed-
back or through selection of refinement terms suggested by
the system [21]. Relevance feedback methods are identical
to those used for automatic query expansion, except they are
based on the relevant documents specified by the user, in-
stead of the top ranked documents. Two popular techniques
for generating refinements are web page clustering [7] and
query log analysis [9]. While the focus of this paper is on au-
tomatic query expansion, it is useful to consider interactive
query expansion methods too as they use similar techniques
and they offer a nice platform for performance comparison
as in some sense they make optimal refinements.

Automatic query expansion systems have typically tried
to enhance recall and not precision [24]. On easy queries
where the initially retrieved documents are already quite
relevant, recall is improved. On hard queries where the
initially retrieved documents are irrelevant, the modifica-
tions do not help. Queries are typically extended with 20 or
more terms [21], which often helps recall, but hurts preci-
sion due to query drift. With web search, where the corpus
is much larger, the problem is to find some relevant doc-
uments; upon finding the right keywords, there are usually
more than enough relevant documents. Precision is therefore
more important than recall. This paper considers methods
that make smaller query modifications, suitable for precision
enhancement and web search.

Both local (using only documents in the result set) and
global document analysis (using thesauri or properties of
the entire corpus) provide sources for refinement terms [26].
The association hypothesis states that “if an index term is
good at discriminating relevant from irrelevant documents,
then any closely associated index term is also likely to be
good at this.” [23]. Early attempts to apply the associ-
ation hypothesis using co-occurrence information to query
refinement had poor results [21]. But recently, due to much
larger corpora, co-occurrence information has become more
reliable as shown by the Google similarity distance [5]. This
kind of global document analysis has been applied to web
page clustering and was shown to significantly improve per-
formance over algorithms using only local document analysis
[7]. AbraQ also uses global document analysis in the form of
search result counts to help identify new refinement terms,
but uses the counts in several new ways.

One part of AbraQ involves analyzing the query to iden-
tify aspects. Previously, researchers have identified com-
mon phrases in queries and used these to improve perfor-
mance. Structured queries are Boolean queries containing
AND, OR, NOT and PROXIMITY operators like phrases.
Structured queries can improve retrieval performance [8],
but users rarely use structured queries and tend to prefer
unstructured and natural language queries [13]. Two ap-
proaches to query refinement attempt to identify phrases
for structured queries from natural language queries: the
syntactic tagging approach which uses part of speech tag-
ging and the dictionary approach [8]. The problem is that
many web search queries are not natural language, but just

an unstructured sequence of words. While dictionary ap-
proaches work with unstructured queries, they are limited
in their scope and usually only work with domain specific
corpora.

Other researchers have also tried to identify aspects and
have termed the process query splitting. Query splitting is
the process of splitting the query into its individual aspects.
A trivial approach is to split the query into single words
[27], although this does not sufficiently capture the aspects
as many words change substantially from their individual
meaning once placed into a sequence. A more sophisticated
approach uses clustering to identify multi-word aspects [28].
We are proposing a new approach that uses global document
analysis to identify query aspects.

One relatively new research area is estimating query diffi-
culty. One suggested benefit of estimating query difficulty is
that it could improve automatic query expansion by identi-
fying easy queries and applying automatic query expansion
to only those easy queries [27]. However, easy queries are
less likely to need refinement. In this paper, we show how
to improve automatic query expansion for hard queries by
identifying underrepresented query aspects and present a
successful method of distinguishing between easy and hard
queries.

Previous research has found that aspects affect query ex-
pansion. Terms that reflect multiple aspects of the original
query are often better [26, 6]. Researchers have also found
analyzing aspects to be useful in other areas. Another ap-
proach that uses aspects is the stepping stones and path-
ways method [17], but it is solving a different problem —
where there is no single document that contains all the de-
sired content and the desired content can be found from a
series of documents spread through a sequence of connected
but separate searches. We propose a new automatic query
expansion method that identifies the aspects of an unstruc-
tured query, identifies which aspects are underrepresented
in the result set, and finds a suitable refinement.

3. MULTI-ASPECT QUERIES
Constructing an effective query for a search goal involves

finding a conjunction of terms that co-occur in documents
that satisfy the search goal. The terms must be both dis-
tinctive and discriminating: they must occur in many of the
desired documents, while not appearing together in unde-
sired documents.

Frequently, many documents contain all the query terms,
but just focus on a subset of the query aspects. For example,
the two aspect query “black bear attacks” may produce a
result set consisting of documents that discuss black bears
in detail, but only mention in passing that they sometimes
attack. Although this result set contains all desired terms,
it only focuses on the “black bear” aspect, and has missed
the “attacks” aspect.

There are different approaches to refining queries with un-
derrepesented aspects. Consider the search goal of finding
documents that discuss the effectiveness of increased airport
security. A typical starting query could be “airport secu-
rity”. However, the result set might focus on the security
aspect and contain documents for security company websites
and financial news articles about those companies. One re-
finement approach is to add additional descriptive words.
These could be for search goal aspects that are not yet in
the query or for existing query aspects. A search goal as-

pect could be introduced into the query by adding the word
“effectiveness” to the query, but that may not help with
the initial problem; in fact, it may even narrow the results
further in the wrong direction, towards the company news
articles discussing the effectiveness of some new procedure.
An alternative would be to add an additional descriptive
word such as “airfield” for the underrepresented airport as-
pect. While that would probably ensure the airport aspect
was well represented, it would also probably shift the other
query aspects out of focus, and it may also cause query drift,
or eliminate many relevant documents.

Web search systems work by finding documents that con-
tain terms whether or not the terms are descriptive of the
document contents. When expanding a query for refinement
purposes, users often choose additional descriptive terms be-
cause it is natural for them to think descriptively about
search goals, but such terms are often ineffective because the
terms that describe the content are not necessarily present
in the documents and may not be very discriminating. On
the other hand, search engines easily cope with indirectly re-
lated terms that co-occur frequently with other descriptive
terms, these terms are often effective because the terms are
distinctive and discriminating. Our idea is to refine queries
with underrepresented aspects using indirect refinements.
Indirect refinements use co-occurring words that are not
necessarily descriptive words. For example, in the previ-
ous airport security example, adding the word “baggage” or
“terrorist” may bring the airport aspect into the documents
without causing query drift or eliminating many relevant
documents.

While it is incredibly hard for users to identify indirect
refinement terms, AbraQ1 can provide these kinds of re-
finement by leveraging global document analysis techniques.
The problem are how to identify the query aspects auto-
matically, how to identify which query aspects are under-
presented in the result set automatically, and then how to
pick the best indirect refinement term for addressing the
underrepresented aspect.

4. ALGORITHM
AbraQ is an automatic query expansion method that uses

local and global document analysis. The algorithm has three
steps: identify query aspects, identify underrepresented as-
pects, and identify the refinement. This section is broken
into two main parts: 4.1 describes, at a higher level of ab-
straction, the key ideas and principles behind AbraQ; 4.2 de-
scribes our current implementation of these ideas and prin-
ciples and this is the implementation of AbraQ that is used
for evaluation.

4.1 Ideas and Method

4.1.1 Identify Query Aspects
The order of words in unstructured queries carries im-

portant semantic information: users typically group words
related to a single aspect into phrases. For example, users
may search for “Microsoft office 2007 reviews” or “reviews
Microsoft office 2007”, but they probably would not search
for “Microsoft reviews 2007 office” or “2007 office reviews
Microsoft”. Finding sub-sequences of the query words that

1AbraQ identified both “terrorist” and “baggage” as high
ranking refinement terms for the query “airport security”

commonly occur together as a phrase will help identify query
aspects.

Global document analysis provides two factors that iden-
tify aspects: existence and support. To be an aspect, the
sub-sequence of words must exist — occur frequently enough
relative to the frequency of the set of words, and have sup-
port — occur frequently enough relative to the frequency of
all other permutations of the same words.

Any subsequence of the query could represent an aspect:
bi-grams, tri-grams, and so on, up to n-grams, where n is
the length of the query. We can reduce the number of sub-
sequences that have to be considered by constructing subse-
quences greedily from left to right and making the assump-
tion that if an i-gram subsequence is not an aspect, then it
cannot be extended to become an (i + 1)-gram aspect. This
reduces the number of aspect checks for an n word query
from O(n2) to O(n).

4.1.2 Identify Underrepresented Aspects
Different aspects invoke different vocabulary. For exam-

ple, “Microsoft office 2007” may invoke terms like “win-
dows”, “spreadsheet”, and “word processor”, while “review”
may invoke terms like “compare”, “performance”, and “eval-
uate”. Documents that reflect an aspect are more likely to
use at least some of the vocabulary related to that aspect.
An aspect is probably underrepresented in a result set if the
documents do not sufficiently represent the vocabulary of
the aspect.

The vocabulary of each aspect can be constructed by
analysing the frequencies of terms in documents returned
from all the sub-queries consisting of a subset of the aspects
of the full query. Sub-queries containing fewer aspects are
more likely to return documents containing the vocabulary
of the aspects. Any sub-query containing an aspect can
contribute to that aspects vocabulary, but those with fewer
aspects should be weighted more heavily.

If the documents from the original query do not contain
enough of the vocabulary model of an aspect, then that as-
pect is potentially underrepresented. For example, in the
example above, the words “compare” and “performance”,
which are associated with “review” may not be present in
many documents from the result set, indicating that the re-
view aspect may be underrepresented. The aspect score is a
measure of the relative degree to which an aspect is repre-
sented or underrepresented, and can be computed from the
term frequencies in the documents from the original query
and the vocabulary models.

4.1.3 Identify Refinement
If some aspects are underrepresented in the original result

set, then a good refinement is a query that produces a result
set with no underrepresented aspects. Therefore, terms that
are strongly related to underrepresented aspects are good
candidates for expanding the original query, as they are more
likely to lead to good refinements. Additionally, since all
query aspects should be represented in the result set, terms
that are related to multiple aspects are better than terms
that relate to only one aspect.

The quality of the refinement can be measured using the
aspect scores of the refined query.

4.2 Prototype Implementation Details
The following section details the current implementation

of AbraQ. We have made no attempt to tune parameters or
optimise the algorithms.

4.2.1 Identify Query Aspects
To identify aspects of the query, the current implementa-

tion of AbraQ does a greedy search for subsequences of the
query that have a score greater than a predefined threshold.
AbraQ defines the score of a subsequence as the product of
the Existence and Support factors for the subsequence. Exis-
tence and Support are defined in terms of D(s), the number
of documents that contain each of the words in a sequence
s, and DP (s), the number of documents that contain s as a
phrase.

Existence(s) =
DP (s)

D(s)

Support(s) =
DP (s)P

s′∈Perm(s)\{s} DP (s′)

where Perm(s)\{s} is the set of all permutations of the se-
quence s other than s itself.

AbraQ currently considers a subsequence of the query to
be an aspect if Existence(s) · Support(s) ≥ 1.0. Alterna-
tively, instead of producing a trade-off between the factors,
an implementation could consider each factor separately.
Future work could investigate the difference between these
approaches.

If two parts of the query both describe the same aspect,
this implementation identifies multiple synonymous aspects.
This poses no problem for this application, but it may be
possible to improve performance or efficiency by identify-
ing this relationship between aspects. Future work could
explore using a thesaurus like WordNet or other kinds of
global document analysis to identify synonymous aspects.

If there is only one query aspect in the query then the
result set of the original query is presented to the user and
AbraQ makes no refinement.

4.2.2 Identify Underrepresented Aspects
To construct vocabulary models of each aspect, AbraQ

runs sub-queries for all aspects and all pairs of aspects iden-
tified in the first step, and finds all the terms that occur
in the documents returned. (The current implementation
restricts the result set to just the first 10 documents, but re-
trieving more documents would improve the statistics.) For
each aspect, it ranks the terms according to document fre-
quency (the number of retrieved documents containing the
word from the sub-queries that contained the aspect), re-
taining the top 200 terms only. Then, for each aspect, it
adds to the vocabulary model of the aspect, the 50 best
terms from the top 200, ranked according to the strength of
co-occurrence with the aspect.

The sub-queries currently use the set of words associated
with each aspect rather than the phrase of the sequence
of words; future work could explore the restriction of the
queries to the phrases.

The co-occurrence strength (CS(t, a)) is the ratio between
the actual and the expected co-occurrence frequency of a
term t and an aspect a. The actual co-occurrence frequency
is the fraction of documents that contain both the aspect
and the term. The expected co-occurrence frequency is cal-
culated by assuming that the aspect and the term are inde-
pendent and computing the product of the fraction of docu-

ments that contain the aspect and the fraction of documents
that contain the term.

CS(t, a) =
D(t ∧ a) ·D
D(a) ·D(t)

The vocabulary model (Vocab(a)) of an aspect is a normal-
ized weighted vector of terms that had a high co-occurrence
with the aspect. The term weights are the sum of the contri-
butions to each term from the sub-queries. The contribution
is the co-occurence strength divided by the number of as-
pects in the sub-query. AbraQ normalizes each model’s term
weights to one using an independence assumption similar
to Naive Bayes, treating the weightings from multi-aspect
queries as independent of the weightings from single-aspect
queries. Future work could consider a richer Bayesian model.

Vocab(a) = {{t1, w1}{t2, w2} · · · {tn, wn}}

wi =
1

N

X
q′∈sub-queries

CS(ti, a)

|q′|

where N is the normalizing factor to ensure
P

i(wi) = 1 and
|q′| is the number of aspects in the sub-query q′.

AbraQ identifies underrepresented aspects by scoring the
vocabulary model of each aspect against the documents from
the original query. The raw aspect score (RAW (a, q)) is the
dot product of the weights in the aspect’s vocabulary model
and the term frequencies in the documents returned by the
original query q. The relative aspect scores (RAS(a, q)) are
the raw aspect scores normalized so they sum to one, and
indicate the relative probabilities that aspects are underrep-
resented.

An aspect is considered underrepresented if its relative as-
pect score is below the representation level threshold (RLT),
which depends on the number of aspects (|q|). For queries
with two aspects, the representation level threshold is 33%;
for queries with three aspects, it is 25%.

RLT (q) =
1

|q|+ 1

RAS(a, q) < RLT (q) −→ a is underrepresented

If an aspect is very underrepresented, then this constitutes
evidence that it may not be a valid aspect at all. If the rela-
tive aspect score RAS(a, q) of an aspect is below a minimum
threshold of 20% of the RLT (q), then AbraQ backs off its
assumption that the terms form an aspect and (if possible)
tries splitting the aspect into two sub-aspects. AbraQ splits
the aspect by removing the last word from it and forming
a new aspect using this word. AbraQ then recalculates the
aspect scores with the new set of aspects. It continues split-
ting very underrepresented aspects until either they are sin-
gle words or the aspect score is greater than the minimum
threshold. This back-off procedure ensures that misidenti-
fied aspects from the first stage of the algorithm do not cause
the system to misidentify an underrepresented aspect.

4.2.3 Identify Refinement
If there are no underrepresented aspects then the result

set does not suffer from the aspect coverage problem, and
AbraQ does not attempt to refine the query. If there are
underrepresented aspects, then AbraQ picks the aspect with
the worst relative aspect score and tries to identify a refine-
ment to improve the representation of that aspect.

The vocabulary models in the previous stage used term
weightings based on the co-occurrence strength of the term
with the aspect. AbraQ identifies candidate terms by select-
ing the higher weighted terms from the vocabulary model of
the least represented aspect. For each possible term, AbraQ
constructs a new query consisting of the old query plus the
refinement term, runs the new query, then re-computes all
the aspect scores (as in the previous stage) but using the re-
sult set of the refined query instead of the original query. To
score a refinement q′, it sums the new aspect scores, weight-
ing the previously underrepresented aspects more heavily.

RS(q′) =
X

a

RAW (a, q′)

RAS(a, q)

where the sum is taken over the aspects a in the original
query.

AbraQ then presents the result set of the highest scoring
query refinement to the user.

5. EVALUATION
We evaluated AbraQ by comparing its performance to a

set of automatic query expansion methods and a set of in-
teractive query expansion methods. We applied all the algo-
rithms to a set of hard queries and measured their effective-
ness at improving the precision of the queries on Google.

5.1 Testing Set
It is most important to evaluate refinement performance

on hard queries, as easy queries already have good perfor-
mance and do not require refinement. The testing queries
are the topic titles of ten queries from the TREC 2005 hard
track (topic numbers: 303, 307, 310, 314, 322, 325, 336,
341, 363, and 416). We selected these test queries by tak-
ing the first one or two topics (by topic number) from each
of the seven types of queries that were identified by [30] in
the TREC 2005 hard track. The queries had between one
and three aspects and varied in length between two and five
words. The mean query length is 2.9, which is similar to the
typical user query of length 2.92 [13]. Some of the queries
are hard: three had no relevant results and three others had
few relevant results in the initial Google search. Some re-
sult sets have underrepresented aspects and some focus on
irrelevant aspects.

5.2 Measurements
The results were evaluated using two measurements: P@5

and P@10, which are the precision of the first 5 and first
10 documents in the search results respectively, where pre-
cision [10] is the number of relevant documents retrieved
divided by the number of documents retrieved (5 or 10 in
this case). P@n measures do have problems when there are
not enough relevant documents in the collection [22], but
this is not a problem in our case as there are more than
enough relevant documents for the search tasks used in our
experiments. The reason for evaluating precision using just
the first 5 and 10 documents is because most of the time
(over 70%) web search users only look at the first page of
results [13]. The relevancy judgements were based on the
description and narrative from the TREC 2005 hard track.
The description specifies the user’s search goal and the nar-
rative gives specific details on what would be relevant and
irrelevant documents.

Table 1: Automatic query expansion methods com-
pared on 10 search tasks from TREC 2005 hard
track against Google baseline

Precision Queries Queries
Method (Std Dev) Improved Worsened

First five results

GOOGLE 40% (35%) - -
AbraQ 62% (20%) 50% 0%
df1 36% (39%) 20% 30%
df5 40% (33%) 20% 20%
tf1 32% (30%) 10% 40%
tf5 38% (29%) 20% 20%
tfidf1 32% (32%) 10% 30%
tfidf5 42% (38%) 20% 30%

First ten results

GOOGLE 38% (30%) - -
AbraQ 52% (22%) 60% 0%
df1 32% (27%) 10% 30%
df5 35% (35%) 20% 20%
tf1 29% (28%) 0% 30%
tf5 40% (35%) 30% 20%
tfidf1 34% (32%) 20% 30%
tfidf5 37% (36%) 20% 20%

5.3 Automatic Query Expansion
AbraQ provides automatic query expansion, which means

that it directly presents the user with a result set and takes
no input from the user beyond their original query. We
compared AbraQ against six different automatic refinement
methods. All methods could benefit equally from more so-
phisticated document models and term weighting; however
the focus is on the term selection component, so the simple
Boolean model is used for evaluation, as this excludes the
effect of term weighting. As in [24], the three term ranking
methods used were document frequency (df), term frequency
(tf), and term frequency inverse document frequency (tfidf).
The two selection methods used to select the terms for query
expansion were the top term (1), and the disjunction of the
top five terms (5). This gave six methods (df1, df5, tf1,
tf5, tfidf1, and tfidf5) for automatic query expansion and all
used terms from the top five documents.

Our results shown in table 1 show that traditional au-
tomatic query expansion methods have a negative impact
on precision and this agrees with past findings that these
methods focus on recall enhancement and not precision [24].
Other researchers have found that around 25% of queries suf-
fer from query drift [21] leading to lower precision. Our find-
ings corroborate this with just over 26% of queries having
worse precision after expansion using one of the six tradi-
tional methods. The results also seem to indicate that using
fewer terms for query expansion is more likely to cause query
drift in Boolean queries. On closer examination of the re-
sults, queries where the result set initially had no relevant
documents were mostly unaffected and those that had rele-
vant documents initially were affected slightly positively or
negatively about an equal number of times, but sometimes
a significant drop in precision occurred due to query drift.
At best, the traditional automatic query expansion methods

have little effect on precision and may reduce it. In contrast,
AbraQ provided substantial improvement to many queries
without decreasing performance of any others.

The improvement made by AbraQ was significant. Sig-
nificance was tested by comparing each pair of methods us-
ing the Wilcoxon signed-rank test. The results showed that
there was no significant difference between Google and any
of the six automatic query expansion methods, but AbraQ
was significantly better at a 95% level of confidence than
Google and each of the other six methods.

5.4 Detailed Analysis
A more detailed analysis of the ten queries is shown in

table 2. AbraQ modified six of the ten queries and within
the first five results, AbraQ improved five of the six queries
it modified, and improved all six queries within the first ten
results. The four queries that were not modified by AbraQ,
were the queries for which Google provided good results.
Google’s precision for the first five documents on those four
queries was 70%, compared to 20% for the other six queries
that AbraQ modified. So AbraQ significantly improves the
performance of queries that are hard for the underlying
search system and does not affect queries that are easy for
the underlying search system. The benefit of improving hard
query performance is even greater than is initially apparent:
improving low precision queries can mean the difference be-
tween satisfying the search goal or not, whereas high pre-
cision queries already provide sufficient answers and so the
benefit of improvement is less for high precision queries.

Table 2 shows that AbraQ only affected queries with poor
initial performance on Google. This shows that identifying
the underrepresented aspects using AbraQ provides an ac-
curate method of identifying these poor performing queries.
It also suggests AbraQ could provide a method for estimat-
ing query difficulty which has the benefit of making this
technique applicable to other applications [27].

The results show that addressing poor aspect coverage can
significantly improve many hard queries, lending credence
to the suggestion by other researchers [4] that the primary
cause of poor search results in multi-aspect queries is poor
aspect coverage.

5.4.1 Aspect Identification
There is no rule about what constitutes an aspect: for

one search, a sequence of words may be an aspect, but for
a different search, the same word sequence may form two
or more aspects. The backing off in the second stage ex-
tends the search of the query aspect space from what was
done greedily with the initial construction. The additional
searching takes place using guidance from the result set to
constrain the search to the right part of the search space.

As expected, AbraQ is overly zealous at joining words
together into aspects in the first step of the algorithm. After
the first step, in eight of the ten queries, the query aspects
identified matched the actual aspects of the search goal. In
both cases where the aspects did not match, the aspects
identified had joined too many words together. Fortunately,
this was expected and it did not affect performance as the
back-off procedure in the second step correctly reduced the
aspects in these two cases to match the correct aspects.

5.4.2 Identify Underrepresented Aspects
The method correctly identifies the underrepresented as-

Table 2: Segmented results comparing Google and
AbraQ 10 search tasks from TREC 2005 hard track

Precision Queries Queries
Method (Std Dev) Improved Worsened

First five results

All Queries
GOOGLE 40% (35%) - -
AbraQ 62% (20%) 50% 0%

4 unmodified queries: 303, 307, 310, 416
GOOGLE 70% (12%) - -
AbraQ 70% (12%) 0% 0%
6 modified queries: 314, 322, 325, 336, 341, 363

GOOGLE 20% (31%) - -
AbraQ 57% (23%) 83% 0%

First ten results

All Queries
GOOGLE 38% (30%) - -
AbraQ 52% (22%) 60% 0%

4 unmodified queries: 303, 307, 310, 416
GOOGLE 68% (13%) - -
AbraQ 68% (13%) 0% 0%
6 modified queries: 314, 322, 325, 336, 341, 363

GOOGLE 18% (18%) - -
AbraQ 42% (21%) 100% 0%

pects and is able to identify the cases where all aspects are
sufficiently represented.

In five of the six cases where AbraQ performed query mod-
ification, the aspects that appeared on inspection to be un-
derrepresented in the results agreed with those identified by
AbraQ. So in most cases, AbraQ identifies the underrepre-
sented aspects correctly. The five cases were the same ones
that AbraQ improved performance in the first five results.

In the remaining case where AbraQ performed query mod-
ification, an aspect that appeared to be represented was
identified as underrepresented. However, in the first five
results performance was not affected and in the first ten
results performance improved. This was expected, as in
these cases, AbraQ selects similar terms to those selected
by traditional query expansion methods, and those meth-
ods have negligible effect on performance. Therefore, when
the second step of AbraQ fails, performance should be no
worse than the underlying search system. Yet, AbraQ may
still improve the search as in selecting the best refinement
term, it looks at all aspects, not just the one it believes is
most underrepresented. Therefore, even if it is wrong about
an aspect being underrepresented, the refinement terms will
probably improve the representation of other aspects. More
experiments that dealt with failure cases would be required
to validate this hypothesis.

In the four cases where AbraQ did not perform query
modification, there was either just a single aspect (one out
of the four cases) and therefore trivially well represented in
the result set or all aspects were well represented in the result
set (three out of the four cases). Note that AbraQ trivially
ignores single aspect cases with a single word, and that is
why there was no need to test any single word queries.

Table 3: AbraQ and interactive query refinement
methods compared on 10 search tasks from TREC
2005 hard track against Google baseline

5 results 10 results
Precision Queries Precision Queries

Method (Std Dev) Improved (Std Dev) Improved
All Queries

GOOGLE 40% (35%) - 38% (30%) -
AbraQ 62% (20%) 50% 52% (22%) 60%
Optimal 82% (18%) 90% 71% (21%) 100%
STC 48% (34%) 40% 44% (34%) 50%
LINGO 60% (27%) 50% 54% (25%) 50%
QDC 64% (23%) 60% 56% (24%) 60%
MAMMA 42% (38%) 10% 43% (37%) 20%
RAQE 48% (39%) 20% 45% (35%) 30%
PRIQE 54% (40%) 40% 50% (32%) 50%

4 unmodified queries: 303, 307, 310, 416
GOOGLE 70% (12%) - 68% (13%) -
AbraQ 70% (12%) 0% 68% (13%) 0%
Optimal 90% (12%) 100% 85% (13%) 100%
STC 75% (19%) 25% 80% (8%) 50%
LINGO 75% (19%) 25% 75% (13%) 25%
QDC 80% (16%) 50% 80% (12%) 50%
MAMMA 75% (19%) 25% 80% (12%) 50%
RAQE 75% (19%) 25% 80% (14%) 50%
PRIQE 80% (23%) 50% 80% (8%) 50%

6 modified queries: 314, 322, 325, 336, 341, 363
GOOGLE 20% (31%) - 18% (18%) -
AbraQ 57% (23%) 83% 42% (21%) 100%
Optimal 77% (20%) 83% 62% (21%) 100%
STC 30% (30%) 50% 20% (17%) 50%
LINGO 50% (28%) 67% 40% (21%) 67%
QDC 53% (21%) 67% 40% (13%) 67%
MAMMA 20% (31%) 0% 18% (24%) 0%
RAQE 30% (40%) 17% 22% (20%) 17%
PRIQE 37% (41%) 33% 30% (24%) 50%

5.5 Interactive Query Refinement
In addition to the automatic query modification methods,

there are many methods of interactive query modification.
These methods are quite different from AbraQ, in that they
depend on additional information from the user. While these
methods do not compete with AbraQ and could be used in
combination with AbraQ, we include them here to test the
upper limits of AbraQ.

The one-step refinement performance of a representative
range of interactive query refinement methods were com-
pared with AbraQ. For each interactive refinement method,
the results shown in table 3 are the optimal performance,
where a perfect user selects optimally from the fifteen sug-
gestions made by these methods or chooses to make no re-
finement. Table 3 also shows the performance of AbraQ and
the performance of Optimal AbraQ (Optimal), which cor-
responds to the optimal expansion selection from the top
fifteen ranked AbraQ expansions.

5.5.1 Summary of Approaches
The interactive query refinement methods include three

clustering algorithms (Suffix Tree Clustering (STC) [29],

Lingo [18], and Query Directed Clustering (QDC) [7]), a
query log analysis method (Mamma search engine [16]), and
two query expansion methods [21], one based on document
relevance feedback (RAQE), and one that lets users select
from the top ranking tfidf terms from the initial result set
(PRIQE).

The clustering approaches find groups of similar pages in
the result set and present these as refinements. All the stan-
dard data clustering methods [1] have been applied to web
page clustering: hierarchical (agglomerative and divisive),
partitioning (probabilistic, k-medoids, k-means), Bayesian,
and many more. For comparison, we have used the most
successful clustering approaches which use web or document
specific characteristics to assist clustering: Suffix Tree Clus-
tering (STC) [29] and Lingo [18] use phrases and Query Di-
rected Clustering (QDC) [7] uses the relationship between
terms and the query.

Query log analysis [9] finds similar queries through ei-
ther textual similarity or from their relative position in a
sequence of queries during the search sessions of different
users. The most similar queries are presented as refinements.
Effective query log analysis requires having sufficiently large
query logs and so we chose to compare against the Mamma
search engine [16].

Relevance feedback methods are similar to the methods of
automatic query expansion discussed earlier. During doc-
ument relevance feedback as in RAQE, the user specifies
which documents in the initial result set are relevant, as
opposed to the top N documents being assumed relevant,
as in automatic query expansion. Then the terms from the
relevant documents that do not appear in the irrelevant doc-
uments are ranked using tfidf and the best term is selected
for refinement.

Pseudo, blind, or ad-hoc relevance feedback methods are
identical to automatic query expansion. However, instead of
simply picking the best term for refinement, the top ranked
terms are presented to the user as in PRIQE.

5.5.2 Results Discussion
Table 3 shows that AbraQ performs well, even against

methods that require further user input and receive the best
possible input. This user input provides additional insight
into the search goal and therefore can potentially improve
the four unmodified queries. Over all ten queries, AbraQ
outperforms all other methods except one in the first five
results and two in the first ten results. On the six modified
queries, AbraQ outperformed all other methods within both
the first five results and the first ten results. In all cases,
when AbraQ is on level footing with the other algorithms,
and the optimal refinement selection is made from fifteen
possible refinements then AbraQ labeled Optimal clearly
outperforms the other interactive methods of query refine-
ment.

Optimal AbraQ is able to improve the performance of the
four queries that AbraQ did not try to modify and Optimal
AbraQ improves upon all but one of AbraQ’s six modifi-
cations. This was expected, as different refinement terms
hint at subtly different relationships between the aspects
and since the system is not privy to the information encoded
in the user search goal, it is unable to achieve performance
as good as the optimal user. However, although not opti-
mal, AbraQ does not require the user to make any selection
and there is no guarantee that the user would make optimal

selections. In fact, research [15] has found that from the per-
spective of recall enhancement, while user selections improve
performance, they failed to reach the optimal performance
and in general performed worse than even automatic query
expansion techniques, which help enhance recall. Similar
results are expected for precision enhancement and there-
fore this has a negative effect on the results shown for all
the interactive query refinements methods, which includes
Optimal AbraQ, but excludes AbraQ.

Clustering methods help when the query is ambiguous and
the different possible meanings of the query have very dis-
tinct sets of associated vocabulary. Web log analysis helps
when the query is short and other users have frequently
refined this query. Relevance feedback helps when the ini-
tially retrieved documents are reasonably relevant. Our new
method, AbraQ, works independently of the distinctness of
the concepts in the relevant and irrelevant documents, the
length or frequency of the query, and even works when there
are no relevant documents amongst those initially retrieved.

As earlier, significance was tested by comparing each pair
of methods using the Wilcoxon signed-rank test. On the first
five results, Optimal AbraQ was significantly better than
all other methods at a 99% level of confidence. AbraQ,
Lingo, and QDC were significantly better than both Google
and Mamma at a 95% level of confidence. On the first ten
results, Optimal AbraQ was significantly better than all but
Lingo and QDC at a 95% level of confidence. AbraQ was
significantly better than Google, STC, and Mamma at a 95%
level of confidence. There was no significant improvement
by any other method.

5.6 Algorithm Complexity and Efficiency
Although most computations performed in the algorithm

are relatively cheap, two components are quite costly: count-
ing the number of matching documents (counts), and query-
ing to find matching documents (queries). As the number
of aspects grows, so does the amount of counting and query-
ing required. Fortunately, most queries have few words and
even fewer aspects: 86% of queries have less than five words,
and only 0.4% have more than nine [13].

For a query with n words, and a aspects, identifying the
query aspects involves counting the number of matching
documents for all permutations of each potential aspect, of
which there are O(n). Identifying the underrepresented as-
pects involves running O(a2) queries, one for each aspect
and one for each pair of aspects. This step also involves
computing the co-occurrence strength for O(a) terms, which
each require one count. During this step, the algorithm may
choose to back off an aspect, this can occur at most n − a
times and requires rerunning this step, but fewer queries and
counts are required as many will already have been com-
puted. Identifying the refinement involves O(1) queries, one
for each refinement tested.

Aspects are typically one to three words in length. Assum-
ing that the maximum length of any aspect is four words,
then the worst case occurs when there is one aspect for every
word in the query. In this case the number of counts and
number of queries performed are given by:

Counts = 403n− 3

Queries = n2/2 + n/2 + 50

That means for queries of 2 to 10 words, between 803 and
4027 counts are required and between 53 and 105 queries are

required. For approximately 10% of aspects, the algorithm
will back-off an aspect in the second stage of the algorithm.
This incurs less than 20% additional cost in the case with
10 words, or more specifically it incurs an additional 800
counts and 2a− 1 queries, where a is the number of aspects
before the back-off.

Many queries are easy, about 70% contain just one as-
pect and AbraQ terminates after the first stage, using just
a handful of inexpensive counts. Of the remaining queries,
about 50% are answered sufficiently by search engines and
AbraQ can terminate after the second stage. In these cases,
AbraQ’s cost is negligible for the majority of queries, as
they tend to be short. Most of the cost of AbraQ is in the
final stage, finding the refinements, and this only occurs on
the remaining queries (15%) that AbraQ can potentially im-
prove significantly. These 15% of queries are amongst the
ones that users spend most (over 90%) of their total search
time refining [13]. Our analysis has not taken into account
the number of queries saved by avoiding the user’s refine-
ment process. Future work could analyze the number of
refinements and queries saved by AbraQ.

The impact on search responsiveness is small. Queries
and counts can be performed in parallel, so AbraQ enhanced
queries take no longer from the user’s perspective. But ad-
ditional hardware will be required to process the same num-
ber of queries. The most significant component of the cost is
the additional queries. When weighted by the frequency of
occurrence [13], the average AbraQ refinement will involve
56 queries. Therefore, averaged over all searches, including
those where AbraQ is not applicable, AbraQ will increase
the number of queries performed by a factor of ten.

Counts are fairly cheap compared to queries. For most,
finding the count requires only a lookup in the existing doc-
ument frequency table of the search engine. For those that
much be computed, an approximation is sufficient and this
is far cheaper than determining the exact number. Ap-
proximations are sufficient, as shown by the experiments
in this paper, which used the approximations returned by
Google for the counts. Furthermore, the counts are corre-
lated, which further reduces the cost, for instance, the count
of the intersection between terms can be computed simulta-
neously with the count of the individual terms.

The queries can also be computed for significantly less
cost than is initially apparent. As with the counts, many
queries are correlated, which reduces the cost, for instance,
the pairs of aspects in the second stage are correlated with
the individual aspects, and the refinement candidates in the
third stage are correlated with the user’s original query. Ad-
ditionally, the quality of the matching documents is less im-
portant, the only requirement is that the vocabulary is sim-
ilar. This means that far fewer documents could be ranked
than during a normal search, significantly reducing the cost
of queries. If approximately one tenth the documents were
ranked, this would mean AbraQ would only increase the to-
tal number of queries performed by a factor of two. Which
is very reasonable, considering the significant benefit for the
most time consuming queries.

6. CONCLUSION
This paper has presented AbraQ, a new automatic query

expansion algorithm that significantly improves web search
performance on hard multi-aspect queries. AbraQ works in-
dependently of document characteristics, the length or fre-

quency of the query, and is even independent of there being
any relevant documents amongst those initially retrieved.
Firstly, AbraQ identifies aspects in an unstructured query,
giving a new solution to the query splitting problem. Sec-
ondly, AbraQ introduces a way of identifying underrepre-
sented query aspects. Identifying underrepresented aspects
is of great significance since the main cause of search failure
for a broad range of web search and information retrieval
systems is underrepresented aspects in multi-aspect queries.
Thirdly, AbraQ is able to automatically select a refinement
that addresses underrepresented query aspects.

The evaluation of AbraQ has shown that while other auto-
matic refinement techniques focus on recall with no positive
effect on precision, AbraQ significantly improves precision
on hard multi-aspect queries. The evaluation also showed
that AbraQ successfully identified the aspects and success-
fully identified whether the aspects were sufficiently repre-
sented in the result set. By only applying refinements to
hard queries where performance was poor on the underly-
ing search system, the system provides a potential mecha-
nism for estimating query difficulty, which has applications
to other areas.

AbraQ was also compared against interactive query re-
finement methods that leverage additional user input. Even
with optimal user input for the other approaches, AbraQ
performed at a similar level to the best approaches and the
only method to do significantly better was an interactive
adaption of AbraQ. Under normal conditions, the other ap-
proaches would not achieve optimal performance because of
sub-optimal user input, which other researchers have found
to be typical, whereas AbraQ would continue performing
well.

While the results and contributions of this paper are sig-
nificant, there is still much room for improvement. Many
parts of AbraQ have simplistic implementations and it may
be possible to improve the performance of AbraQ signif-
icantly by using some of the suggestions identified in the
prototype implementation sections of the algorithm, for ex-
ample, by using Bayesian networks instead of Naive Bayes
when identifying underrepresented aspects. Further investi-
gation is needed into the applicability of AbraQ for query
difficulty estimation.

7. ACKNOWLEDGMENTS
Daniel Crabtree is supported by a Top Achiever Doc-

toral Scholarship from the Tertiary Education Commission
of New Zealand.

8. REFERENCES
[1] P. Berkhin. Survey of clustering data mining

techniques. Technical report, Accrue Software, San
Jose, CA, 2002.

[2] C. Buckley. Why current ir engines fail. In ACM
SIGIR, pages 584–585, New York, NY, USA, 2004.
ACM Press.

[3] C. Buckley, G. Salton, J. Allan, and A. Singhal.
Automatic query expansion using smart: Trec 3, 1994.

[4] D. Carmel, E. Yom-Tov, A. Darlow, and D. Pelleg.
What makes a query difficult? In ACM SIGIR, pages
390–397, New York, NY, USA, 2006. ACM Press.

[5] R. L. Cilibrasi and P. M. Vitanyi. The google
similarity distance. IEEE Transactions on Knowledge

and Data Engineering, 19(3):370–383, March 2007.

[6] K. Collins-Thompson and J. Callan. Query expansion
using random walk models. In CIKM, pages 704–711,
2005.

[7] D. Crabtree, P. Andreae, and X. Gao. Query directed
web page clustering. In Web Intelligence, pages
202–210, 2006.

[8] B. B. Croft, H. R. Turtle, and D. D. Lewis. The use of
phrases and structured queries in information
retrieval. In ACM SIGIR, pages 32–45. ACM Press,
1991.

[9] H. Cui, J.-R. Wen, J.-Y. Nie, and W.-Y. Ma.
Probabilistic query expansion using query logs. In
WWW, pages 325–332, 2002.

[10] C. de Loupy and P. Bellot. Evaluation of document
retrieval systems and query difficulty. In Using
Evaluation within HLT Programs : Results and
Trends, pages 34–40, 2000.

[11] D. Harman. Relevance feedback and other query
modification techniques, chapter 11, pages 241–263.
Englewood Cliffs: Prentice Hall, 1992.

[12] M.-H. Hsu, M.-F. Tsai, and H.-H. Chen. Query
expansion with conceptnet and wordnet: An intrinsic
comparison. In AIRS, pages 1–13, 2006.

[13] B. J. Jansen, A. Spink, and J. O. Pedersen. A
temporal comparison of altavista web searching.
JASIST, 56(6):559–570, 2005.

[14] C. S. G. Khoo and D. C. C. Poo. An expert system
approach to online catalog subject searching.
Information Processing and Management,
30(2):223–238, 1994.

[15] M. Magennis and C. J. van Rijsbergen. The potential
and actual effectiveness of interactive query
expansion. In ACM SIGIR, pages 324–332, 1997.

[16] Mamma.com: www.mamma.com, 2007.

[17] F. A. D. Neves, E. A. Fox, and X. Yu. Connecting
topics in document collections with stepping stones
and pathways. In CIKM, pages 91–98, 2005.

[18] S. Osiński, J. Stefanowski, and D. Weiss. Lingo:
Search results clustering algorithm based on singular
value decomposition. In Intelligent Information
Processing and Web Mining Conference, Advances in
Soft Computing, pages 359–368, Zakopane, Poland,
2004. Springer.

[19] S. E. Robertson and K. S. Jones. Relevance weighting
of search terms. Journal of the American Society for
Information Science, 27(3):129–146, 1976.

[20] J. Rocchio. Relevance feedback in information
retrieval. In G. Salton, editor, The SMART Retrieval
System: Experiments in Automatic Document
Processing, pages 313–323. Prentice Hall, 1971.

[21] I. Ruthven and M. Lalmas. A survey on the use of
relevance feedback for information access systems. The
Knowledge Engineering Review, 19(2):95–145, June
2003.

[22] I. Soboroff. On evaluating web search with very few
relevant documents. In SIGIR, pages 530–531, 2004.

[23] C. J. van Rijsbergen. Information retrieval.
Butterworths, 2nd edition edition, 1979.

[24] B. Vélez, R. Weiss, M. A. Sheldon, and D. K. Gifford.
Fast and effective query refinement. In ACM SIGIR,

pages 6–15, 1997.

[25] V. Vinay, K. R. Wood, N. Milic-Frayling, and I. J.
Cox. Comparing relevance feedback algorithms for
web search. In WWW, pages 1052–1053, 2005.

[26] J. Xu and W. B. Croft. Query expansion using local
and global document analysis. In ACM SIGIR, pages
4–11, 1996.

[27] E. Yom-Tov, S. Fine, D. Carmel, and A. Darlow.
Learning to estimate query difficulty: including
applications to missing content detection and
distributed information retrieval. In ACM SIGIR,
pages 512–519, 2005.

[28] X. Yu, F. A. D. Neves, and E. A. Fox. Hard queries
can be addressed with query splitting plus stepping
stones and pathways. IEEE Data Engineering
Bulletin, 28(4):29–38, 2005.

[29] O. Zamir and O. Etzioni. Web document clustering: A
feasibility demonstration. In Research and
Development in Information Retrieval, pages 46–54,
1998.

[30] J. Zhang, L. Sun, Y. Lv, and W. Zhang. Relevance
feedback by exploring the different feedback source
and collection structure. In Text REtrieval Conference
(TREC), 2005.

