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Abstract
This thesis investigates the refinement of web search results with a spe-
cial focus on the use of clustering and the role of queries. It presents a
collection of new methods for evaluating clustering methods, performing
clustering effectively, and for performing query refinement.

The thesis identifies different types of query, the situations where re-
finement is necessary, and the factors affecting search difficulty. It then
analyses hard searches and argues that many of them fail because users
and search engines have different query models.

The thesis identifies best practice for evaluating web search results and
search refinement methods. It finds that none of the commonly used eval-
uation measures for clustering meet all of the properties of good evalua-
tion measures. It then presents new quality and coverage measures that
satisfy all the desired properties and that rank clusterings correctly in all
web page clustering situations.

The thesis argues that current web page clustering methods work well
when different interpretations of the query have distinct vocabulary, but
still have several limitations and often produce incomprehensible clusters.
It then presents a new clustering method that uses the query to guide
the construction of semantically meaningful clusters. The new clustering
method significantly improves performance.

Finally, the thesis explores how searches and queries are composed of
different aspects and shows how to use aspects to reduce the distance be-
tween the query models of search engines and users. It then presents fully
automatic methods that identify query aspects, identify underrepresented
aspects, and predict query difficulty. Used in combination, these meth-
ods have many applications — the thesis describes methods for two of
them. The first method improves the search results for hard queries with
underrepresented aspects by automatically expanding the query using se-
mantically orthogonal keywords related to the underrepresented aspects.
The second method helps users refine hard ambiguous queries by identi-
fying the different query interpretations using a clustering of a diverse set
of refinements. Both methods significantly outperform existing methods.
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Chapter 1

Introduction

In the context of information retrieval [179, 107], search is the problem of
distilling the few relevant items from the many irrelevant items in a cor-
pus. The corpus can be any collection of items, physical or virtual, homo-
geneous or heterogeneous. For example, the corpus might be a library of
books, a collection of telephone numbers, or a collection of digital audio,
documents, and videos. The relevant items are those that satisfy the user’s
information need or “search goal”, for example, to find Java programming
books or Bob’s telephone number.

Users can search an unorganized corpus by examining every item and
determining one-by-one if they are relevant. While exhaustive search can
be practical for very small corpora such as the sentences in a single short
article, it becomes time consuming for even very modest corpora such as
the telephone numbers of a small town. For more interesting corpora such
as the trillions of web pages on the internet [4], exhaustive search is com-
pletely impractical. To help users search more efficiently, search tools or-
ganize or “index” the contents of a corpus. For example, telephone directo-
ries order surnames with associated telephone numbers and book indexes
order keywords with associated page numbers.

In the context of the web, the corpus is a collection of documents (web

1
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pages), and the search tools are called search engines.1 The typical search
engine [20] organizes the web by crawling it to find all accessible doc-
uments and building indexes that map terms (words or phrases) to the
documents in which they occur. Upon receiving a “query” from a user,
the typical search engine uses its index to find documents containing all
the query’s terms, orders those documents by a measure of relevance, and
then presents this linear list of documents — the search results or “result
set” — to the user as shown in figure 1.1.

Figure 1.1: Search results for the query “jaguar” from Google

Users approach a search engine when they have a search goal and they
communicate that goal to the search engine by expressing it as a query con-
sisting of a set of keywords. For example, a user with the goal of finding
information about the jaguar animal may approach Google, a popular web
search engine, and enter the query “jaguar” as shown in figure 1.1. The
user then evaluates each document in turn assessing its relevance against
their search goal. For example, they would find documents 1 and 2 from
figure 1.1 irrelevant as they relate to the Jaguar car and find document 3

1There are also web based search engines for other corpora such as maps and videos,
and general search engines often search multiple corpora at once. Unless specifically
stated, this thesis discusses search engines that search web pages.
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relevant as it relates to the animal. If the user were unsatisfied with the
result set because it contained too few relevant documents or too many ir-
relevant documents, they would refine their query (by adding, removing,
or altering keywords [119]) and submit the new query to the search en-
gine, restarting the search process. This process [55, 56] repeats until they
solve their search goal or abandon it.

A search is successful if the user finds enough relevant documents to
satisfy their search goal within a reasonable timeframe. Current search en-
gines are successful for many searches, but for some searches, it is very dif-
ficult and very time-consuming [94] for users to construct effective queries
that communicate their search goal. Users waste significant time refin-
ing queries for these hard searches because current search engines do not
help users refine queries and because users and search engines understand
queries differently, essentially they speak different languages.

With more than 130 billion searches in December 2009 [109] from 1.8
billion internet users [163], up from 61 billion searches from 750 million
users in August 2007 [115], there are many users who would benefit from
improved search engines and the potential to improve productivity is im-
mense.

This thesis examines problems with the current methods of searching
the web and examines why efforts to solve those problems have not yet
succeeded. Based on that analysis, the thesis develops several new meth-
ods that help users refine queries and that help search engines understand
the queries users construct better. The thesis also analyzes how to eval-
uate these methods and where necessary, develops new evaluation mea-
surements.

1.1 Hard Searches

The typical web user believes that search engines work exceptionally well
and they say things such as “I always find what I want” and “it can read
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my mind”. The reality is that current search engines work very well for
some searches (the easy searches), but not for others (the hard searches).

Hard searches are those where it takes many queries and a lot of time
for users to find relevant documents and those where users never find
any relevant documents. While accurate, this definition of hard searches
is too abstract to be useful for analysis. Therefore, for analysis this thesis
uses the following definition: easy searches take less than 5 minutes, hard
searches take more than 5 minutes, and very hard searches take more than
30 minutes.2

Improving any search is desirable, but the typical user is generally sat-
isfied by finding just a few relevant documents [139]3 and is very sensitive
to the time and effort devoted to search [131]. Consequently, it is more
valuable to users to reduce the time they spend refining queries and to
increase the fraction of relevant documents among the top ranked doc-
uments (precision), than it is to find more documents that are relevant
(recall) or to improve the ordering of low ranked documents.

Table 1.1: A log of an easy search (15 seconds) for a high school from the AOL

query logs [139]

Timeline
(mm:ss) Query
00:00 de witt clinton public high school
00:13 dewitt clinton public high school

There is marginal value in improving easy searches that search engines
already solve satisfactorily because users spend very little time refining
the queries for these searches and the first few documents are usually rel-

2The literature [2, 3] sometimes uses a third definition based on Precision — easy
queries have high Precision and hard queries have low Precision. The evaluations in
chapter 6 predominantly use this third definition.

3Few users look beyond the first few results.
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Table 1.2: A log of a hard search (almost 30 minutes) for nurse licensing

information from the AOL query logs [139]

Timeline
(mm:ss) Query
00:00 nursing registry
04:18 certified nursing assistant 1
08:48 nursing assistant registry
09:48 license look up for nursing assistants
10:06 nursing assistant 1 certification
11:42 nursing assistant 1 license look ups
12:18 nursing assistant 1 expiration look up
12:30 nursing registry in Raleigh
13:24 nursing aide registry of Raleigh
15:00 nursing aide registry of Raleigh website
16:06 nursing aide registry of Raleigh
19:48 north carolina board of nursing information for nursing assistant 1
22:24 license look up for nursing assistant 1
24:36 license information for nursing assistant 1 expiration
28:30 north carolina nursing assistant 1 license information

evant. In contrast, there is significant value in improving hard searches,
because users must often make a time consuming series of refinements,
examine many irrelevant documents, and examine many result pages to
find a few relevant documents. For example, table 1.1 shows a log of a
user finding relevant documents in less than 15 seconds for an easy search,
while table 1.2 shows a log of another user spending almost 30 minutes to
find relevant documents for a hard search [139]. Furthermore, users cur-
rently fail to solve many hard queries, even when relevant documents ex-
ist; increasing the number of successful searches provides additional value
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to users.

Users spend most of their time on hard searches. Studies of search
engine usage [94, 139]4 show that 48% of searches need just one query and
80% need at most three (the easy searches). However, the remaining 20%
(the hard searches) take 80% of the user’s time and effort to refine as shown
in figure 1.2. The excellent performance on easy searches is what leads the
typical user to believe incorrectly that current search engines have already
solved the search problem.

Searches Time

Figure 1.2: Relatively few hard searches consume most of the time users spend

searching

Hard searches affect all users, including experts. Knowledge about
how to construct effective queries can help users solve some hard searches.
For example, when a result set has no results because the query contains
too many terms, an experienced user will remove the least important terms.
However, knowledge is insufficient to overcome the limitations of the typ-
ical search engine for harder searches such as those where the search goal
has multiple components. For these harder searches, even experienced
users can struggle to formulate effective queries. For example, I spent 7
hours searching for papers containing statistics on search engine usage
before finding an effective query and several relevant research papers.

4Chapter 2 elaborates on these results.
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For both easy and hard searches, there are two classes of search failure:
those where the user’s query is inaccurate or imprecise such as ambigu-
ous queries like “Jaguar” and those where the search engine understands
the user’s query incorrectly such as queries with too many terms. For the
first kind of failure, refinement is unavoidable, but for the second kind, if a
search engine correctly interpreted the user’s intention for the query, there
would be no need for refinement. One way to improve a search engine’s
performance on queries is to improve the search engine’s relevance mea-
sure; another way is to automatically extend or modify queries to express
the goals of the queries better.

1.1.1 Relevance Measures

The intelligence of a typical search engine is stored in its relevance mea-
sure and search model. Ideally, search engines would access the user’s def-
inition of relevance (the search goal) and determine with certainty whether
a document was relevant or irrelevant. Unfortunately, this is not yet pos-
sible and instead search engines must use surrogates or proxies for rele-
vance. The typical search engine uses a soft conjunction of hundreds of
factors [120], such as the importance of query terms and the frequency of
query terms in a document, to determine the relevance of a document to
a query. When these surrogate measures are adequate, the search is easy,
but when they are inadequate, the search is hard.

Researchers have investigated many different relevance measures and
search models [120] on relatively small datasets and these methods can
make some hard searches easier. For example, using a probabilistic model
brings a search engine’s understanding of queries with too many terms
closer to that of the user. The problem is that many of these improved
models are intractable on web scale datasets (tens of billions of pages)
[31] and so typical search engines must make judicious use of them in
the instances where they are most helpful. For example, as of 2007 [71],
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Google mostly treats queries as individual words, but also models a lim-
ited number of the most useful phrases such as “San Francisco” using a
richer model.

Research on applying improved relevance measures and search mod-
els to web scale datasets is sparse, because most researchers (those outside
large public search engines) do not have access to web scale datasets or
the resources necessary for experiments on them. Although this thesis fo-
cuses on web search and is therefore evaluated using web scale datasets,
the focus is on search tools that extend existing search engines (search ex-
tensions) such as by changing queries or by helping users refine queries
and as such external access to existing search engines is sufficient, thereby
avoiding the difficulties associated with web scale datasets.

1.1.2 Changing the Query

Changing the query is another method of improving a search engine’s in-
terpretation of a query and is the method used by users when refining
queries. Researchers have investigated methods that attempt to improve
search performance without user input by extending queries before they
are processed by a search engine and have termed this type of method
Automatic Query Expansion (AQE) [150].

AQE has been developed primarily in the field of information retrieval,
but unfortunately the focus there has been on improving recall [181] (which
has a low priority for web search). Additionally, AQE often decreases pre-
cision (which has a high priority for web search) because the terms used
to expand a query often change the query’s meaning — this effect is called
query drift [50].

There are various methods of finding terms to extend queries such as
Pseudo-Relevance Feedback [156], Thesauri Expansion [88], and Query
Log Analysis [52]. While all these methods generally improve search en-
gine performance for easy searches, the problem is that none of them gen-
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erally improve performance for hard searches and sometimes the methods
make hard searches even harder by decreasing performance.

Pseudo-Relevance Feedback works well on queries that already pro-
duce good results (high precision) [199]. However, for hard searches where
queries have poor initial results (low precision), Pseudo-Relevance Feed-
back often reduces precision further due to query drift [50]. Thesauri Ex-
pansion behaves similarly to Pseudo-Relevance Feedback because the de-
scriptively related terms such as synonyms that are used for expansion are
often polysemous causing query drift. Query Log Analysis improves the
most common searches (those performed by many users) as it relies on
finding the commonalities between the refinements of different users. Un-
fortunately, hard searches are typically uncommon [19], and consequently,
hard searches do not generally benefit from Query Log Analysis.

Recently, researchers observed the importance of distinguishing queries
for easy searches from queries for hard searches and have posed this as an
important research question [186]. One identified application is to limit
query expansion methods to easy searches [199]. While this will improve
performance, the benefits are marginal compared to those achieved by im-
proving the hard searches.

This thesis investigates how to automatically distinguish queries for
easy searches from queries for hard searches and develops a novel method
that automatically improves search performance for hard searches by help-
ing search engines understand the users’ queries better.

1.2 Helping Users Refine Queries

Query refinement is challenging because it involves both understanding
why the previous query failed and generating a new query to overcome
those limitations. Typical search engines do not help users refine queries
and their flat unstructured result sets hinder manual refinement, because
users must sift through the irrelevant documents to determine the various
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reasons their query failed.

Users cannot rely on improved search engines solving all their search
problems; even with search engines that understand queries better, users
will still need to refine inaccurate and imprecise queries such as ambigu-
ous queries. However, search engines can help users refine queries and
they can structure the result sets to help users quickly understand their
contents.

Researchers have investigated various methods to help users refine
queries, which can be classified into two categories: Interactive Query Ex-
pansion (IQE) [150] and Web Page Clustering [201]. IQE uses user input to
guide the addition of extra query terms to queries, while clustering finds
groups of similar documents in the result set.

1.2.1 Interactive Query Expansion

IQE methods include those used for AQE such as Pseudo-Relevance Feed-
back [156], Thesauri Expansion [157], and Query Log Analysis [52]. When
used for IQE, they present the user with a set of different refinements,
rather than automatically changing the query, but they suffer the same
limitations as under AQE. A different IQE method is Relevance Feedback
[150], which has the user mark which result set documents are relevant
and which are irrelevant.

For easy searches that require refinement, experienced search users can
usually find an effective query easily. For example, the query “jaguar”
is easy to refine because the different intents are distinct — documents
about animals have little in common with documents about cars — and
therefore, any refinement term selected by a user is likely to be effective.
However, novice users can have significant trouble as they may not un-
derstand the concept of query refinement and even experts would benefit
from the time saved by a search engine automatically presenting a set of
refinements.
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The problem with the IQE methods is that they are quite limited in the
types of search they can refine, even when only considering easy searches.
Pseudo-Relevance Feedback works well when the top ranked documents
are relevant (queries that usually do not require refinement), Thesauri Ex-
pansion works well when a single term is ambiguous, Query Log Analysis
works if similar queries occur frequently, and Relevance Feedback works
when the user can identify some relevant documents. However, even for
easy searches, the top ranked documents may be irrelevant, the query may
contain multiple terms, the query may not be popular, and the user might
not find any relevant documents.

This thesis develops a novel IQE method that can suggest useful re-
finements when other methods fail and even when none of the documents
retrieved by the original query are relevant.

1.2.2 Web Page Clustering

Web Page Clustering algorithms [201, 136, 122] group similar documents
together into clusters and then present them to the user. Each cluster rep-
resents a different refinement and as a whole, the clustering provides the
user with an overview of the different documents in the result set.

For easy searches that require refinement, the result set usually con-
tains some relevant documents, although when buried deep in the ordered
list, users may struggle to find them manually. Web page clustering helps
by identifying them, grouping them, and bringing the cluster containing
them to the user’s attention. Even when the result set contains no rele-
vant documents, the overview provided by the clustering helps the user
quickly determine why their query failed, which forms the basis for the
user to construct their own refinement.

Although web page clustering algorithms differ in implementation and
performance, and many algorithms use additional factors to guide the
clustering, the primary influence on how all algorithms cluster the doc-
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uments is the document contents. Web page clustering is effective on easy
searches because the different intents of the query align with the different
document contents.

This thesis identifies the conditions under which web page cluster-
ing algorithms are effective, identifies the problems that cause them to
fail, and develops new methods that improve web page clustering per-
formance on easy searches by making clusters that are more semantically
meaningful to users.

1.2.3 Hard Searches

For hard searches that require refinement, even experienced search users
can struggle to find effective queries, because it can be hard to find queries
that exclude the irrelevant documents without also excluding the relevant
ones. For example, the query “wildlife extinction” seems innocuous, but
it is hard to refine because the documents for different query intents use
similar terms — documents about efforts to stop extinction share a lot in
common with documents about the causes of extinction — and therefore,
refinement terms selected by a user are unlikely to be effective.

The problem is that users and search engines speak different languages
(treat queries differently). The typical user might expect the query “efforts
to stop wildlife extinction” to find documents about efforts to stop extinc-
tion and it will, but the user may struggle to find them as the query also
finds many irrelevant documents about the causes of extinction because
the words “efforts” and “stop” occur on all these documents. In contrast,
the typical user might not expect the query “wildlife extinction donation”
to find documents about efforts to stop extinction because semantically it
means something different, but it is an effective refinement because the
term “donation” occurs on the relevant documents, and discriminates be-
tween the relevant and the irrelevant documents.

None of the existing IQE methods and none of the existing web page
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clustering algorithms are particularly effective at finding good refinements
for hard searches. The IQE methods are ineffective for the same reasons
they are ineffective on easy searches and for the same reasons the related
AQE methods were ineffective on hard searches. The better web page clus-
tering algorithms assist with some hard searches, but in general, they pro-
duce refinements that are semantically meaningless to users, as the clus-
ters do not align with the different query intents because the document
contents for different intents are often very similar.

This thesis analyzes the differences between the way users understand
queries and the way search engines understand them, identifies how to
refine hard searches effectively, and develops novel methods that auto-
matically construct effective query refinements for hard searches.

1.3 Major Contributions

This thesis contributes to evaluation, clustering, and query refinement in
the web search domain.

While this thesis focuses on web search, no web specific features such
as hyperlinks are used and therefore, its contributions are equally appli-
cable to any text search problem, including searching email, text docu-
ment repositories, and even sufficiently labelled images and videos. Some
contributions, such as those that help users refine hard searches, may be
even more valuable in other search domains: in the fields of law, finance,
and medicine, users routinely spend significant amounts of time refining
queries for hard searches because their searches are often important, valu-
able, or even a matter of life or death (for example, searching for the anti-
dote to a poison swallowed by a child).
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1.3.1 Evaluation

One contribution of this thesis to evaluation is to determine best practice
(based on a survey of the research literature) for conducting an evaluation
of web search results with respect to selecting a methodology, selecting
a corpus, obtaining a query test set, choosing a baseline, and selecting
performance measures.

Another contribution to evaluation is to determine the properties of
good web page clustering evaluation methods and to evaluate the extent
to which existing evaluation measurements meet these criteria.

The final contribution to evaluation is QC4, a new web page clustering
evaluation method that improves on existing gold standard methods by
using a richer ideal clustering and four new overall measurements. The in-
sight is that the typical ideal clustering (a flat partition) is limiting, because
web page clusterings are often hierarchical with overlap between clusters.
QC4 is the only method that meets all the criteria of a good web page clus-
tering evaluation method. In particular, the measurements allow the fair
comparison of algorithms that construct clusterings with vastly different
characteristics (cluster granularity: coarse or fine, clustering structure: hi-
erarchical or flat, disjoint or overlapping, and cluster size: large or small).

1.3.2 Web Page Clustering

One contribution of this thesis to web page clustering is to determine the
conditions under which web page clustering algorithms are effective and
the problems that cause them to fail.

Another contribution to web page clustering is QDC (Query Directed
Clustering), a new clustering algorithm with five key innovations that en-
able QDC to effectively summarize the result sets of ambiguous queries for
easy searches and help users refine their queries onto one of the query’s
interpretations. The key insight is that the query itself provides a lot of in-
formation about how to cluster the documents in a way that is meaningful
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to users.

QDC is efficient and generates better clusters by pruning ambiguous
and low value words before clustering based on calculations of the seman-
tic distance of words from the query. Following the pruning, QDC uses an
intelligent merge-split clustering algorithm to construct clusters that are
semantically meaningful by creating clusters that are similar in both in-
tension (description) and extension (documents). The splitting phase also
solves the problem of cluster chaining (cluster drift). QDC then chooses
the correct number of clusters to show the user and finally, ranks the doc-
uments according to cluster relevance.

1.3.3 Query Refinement

One contribution of this thesis to query refinement is to determine what
makes searches hard and to find a method that automatically distinguishes
queries for easy searches from queries for hard searches. The Query As-
pect Approach presented by this thesis distinguishes them by identify-
ing queries containing multiple aspects5 where some aspects are under-
represented in the result set (a very common failure for queries for hard
searches).

The Query Aspect Approach identifies query aspects by analyzing the
order of words in the query and determines if the result set adequately
represents the identified aspects by modelling the vocabulary associated
with each aspect. This approach is shown to be very powerful and with
small variations, it addresses many problems, including underrepresented
aspects, hard ambiguity, and keyword overload (too many terms in the
query).

The principal insight behind the Query Aspect Approach is that doc-
uments that represent an aspect should contain a good proportion of that

5Aspects are the distinct terms from the query that correspond to the different parts
of the user’s search goal.
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aspect’s vocabulary. The approach is powerful because it better approx-
imates the descriptive semantics users associate with query terms and it
provides an improved measure of relevance that considers document fo-
cus. Using this relevance measure, methods can automatically determine
which refinement provides the highest quality results.

Another contribution to query refinement is AbraQ, a novel automatic
query expansion method that uses the Query Aspect Approach to improve
search performance for many hard searches without user involvement by
improving the way search engines understand the user’s queries. When
the result set underrepresents any query aspects, AbraQ finds additional
terms related to the underrepresented aspect and tests how well each term
resolves the problem by adding them (one at a time) to the query and
reusing the Query Aspect Approach to evaluate their effectiveness; AbraQ
then applies the best refinement automatically.

The final contribution of the thesis to query refinement is Qasp, an in-
teractive query expansion method that builds on AbraQ to help users re-
fine ambiguous queries for hard searches. Qasp expands the powerful
Query Aspect Approach further by using a simple clustering algorithm
to identify the different interpretations in queries with multiple aspects.
Unlike other interactive query expansion approaches, Qasp groups simi-
lar refinements together and relates them to the aspects they affect. This
helps users understand the effects of refinements before applying them
and enables users to choose a helpful refinement more frequently.

1.4 Thesis Outline and Publications

While conducting the research presented in this thesis, I wrote several
fully refereed publications, which have been extended to form the basis
of this thesis. This section outlines the structure of the remainder of the
thesis and shows how each chapter relates to prior publications.

Chapter 2 provides background information related to web search, search
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engines, search refinement, and search extensions and sets the context for
the rest of the thesis. It also analyzes how users search the web, the dif-
ferent kinds of problematic search they encounter, why these searches are
problematic for typical search engines, and how the existing search engine
extensions fail to address them. Related publications include

• Daniel Crabtree. “Enhancing Web Search through Query Expan-
sion”. Encyclopedia of Data Warehousing and Mining, Second Edition,
Chapter 116, pages 752–757, Information Science Reference (2008).

Chapter 3 identifies the best practice for conducting an evaluation of
web search results and explains the decisions behind the web search eval-
uation choices made in this thesis.

Chapter 4 determines the properties of good web page clustering eval-
uation methods and evaluates the extent to which existing evaluation mea-
surements meet these criteria. Then it presents and evaluates QC4, a new
web page clustering evaluation method. Related publications include

• Daniel Crabtree, Peter Andreae, and Xiaoying Gao. “QC4 - A Clus-
tering Evaluation Method”. In Advances in Knowledge Discovery and
Data Mining, 11th Pacific-Asia Conference, PAKDD07, pages 59–70, Springer-
Verlag (2007).

• Daniel Crabtree, Xiaoying Gao, and Peter Andreae. “Standardized
Evaluation Method for Web Clustering Results”. In The 2005 IEEE/WIC/ACM
International Conference on Web Intelligence, WI05, pages 280–283, IEEE
Computer Society (2005).

Chapter 5 determines the conditions under which web page clustering
algorithms are effective and the problems that cause them to fail. Then it
presents and evaluates QDC, Query Directed Clustering, a new web page
clustering algorithm. Related publications include

• Daniel Crabtree, Peter Andreae, and Xiaoying Gao. “Query Di-
rected Web Page Clustering”. In The 2006 IEEE/WIC/ACM Interna-
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tional Conference on Web Intelligence, WI06, pages 202–210, IEEE Com-
puter Society (2006).

• Daniel Crabtree, Xiaoying Gao, and Peter Andreae. “Improving
Web Clustering by Cluster Selection”. In The 2005 IEEE/WIC/ACM
International Conference on Web Intelligence, WI05, pages 172–178, IEEE
Computer Society (2005).6

Chapter 6 determines what makes searches hard and then presents
the Query Aspect Approach, a method of distinguishing queries for easy
searches from queries for hard searches. Then it presents and evaluates
AbraQ, a method that automatically improves queries for many hard searches
and Qasp, a method that helps users refine ambiguous queries for hard
searches. Finally, it identifies other uses of the Query Aspect Approach
including one that addresses keyword overload in queries. Related publi-
cations include

• Daniel Crabtree, Peter Andreae, and Xiaoying Gao. “Exploiting Un-
derrepresented Query Aspects for Automatic Query Expansion”. In
The Thirteenth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD07, pages 191–200, ACM (2007).

• Daniel Crabtree, Peter Andreae, and Xiaoying Gao. “Understanding
Query Aspects with applications to Interactive Query Expansion”. In
The 2007 IEEE/WIC/ACM International Conference on Web Intelligence,
WI07, pages 691–695, IEEE Computer Society (2007).

Chapter 7 presents the conclusions and potential directions for future
research.

6This paper published research conducted before this thesis on ESTC. It is included
here as one part of QDC extends and improves ESTC’s cluster selection algorithm.
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Background

Web search originates from the well-established field of information re-
trieval [179, 107] and both share concepts, problems, and algorithms. The
first generation (1995–1997) of web search engines mirrored methods from
the information retrieval literature [21], but subsequently web search en-
gines have evolved to consider web specific characteristics and the field
has branched off to become a distinct and flourishing area of research. Be-
cause this thesis focuses on web search, it predominantly references the
web search literature, but where appropriate it also refers to the informa-
tion retrieval literature.

This chapter sets the context for the remainder of this thesis and pro-
vides background information on how users search the web, the problems
users encounter, how typical search engines operate, the limitations of cur-
rent search engines, and efforts to address those limitations.

2.1 Search Goals: Why Users Search

To help users search the web more effectively, it is important to know the
reasons users search, because there is little value in improving searches
of no interest to users and marginal value in improving searches that are
already easy for users. Users search the web for various reasons and the

19
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type of search goal can affect both the type of results expected from search
engines and the search difficulty.

Broder [21] classified search goals into three classes: navigational, in-
formational, and transactional. The intent of navigational goals is to find
a particular site (for example, find the website of Victoria University). The
intent of informational goals is to find information about some topic (for
example, find out when the dinosaurs became extinct). The intent of trans-
actional goals is to perform some action (for example, to purchase a book).

By manually analyzing query logs, Rose and Levinson [149] found that
the most common searches are informational (60 – 65%), the least com-
mon navigational (10 – 15%), and the remainder transactional (20 – 25%).
Jansen et al. [95] found similar results1 on more recent query logs using an
automatic approach.

Informational and transactional goals are similar in that there are usu-
ally many relevant documents that satisfy these goals. In contrast, there
is usually only a single relevant document for navigational goals. Con-
sequently, search engines must treat navigational goals differently from
other goals and must find the right document to satisfy the user’s search
goal.

First generation web search engines were very similar to the methods
used in classic IR, which assume searches are informational, and conse-
quently, navigational goals were hard searches [21]. Research on navi-
gational goals such as the personal home page finding task [47] helped
identify that hyperlink analysis methods such as Google’s PageRank [20]
were effective for navigational goals and since the early 2000s navigational
goals have been easy searches [159].

As current search engines solve most navigational goals, the experi-
ments in this thesis did not include any navigational goals and this thesis
does not consider them further. However, the methods in this thesis are
still applicable to navigational goals. For example, Query Directed Clus-

1after accounting for misclassification errors
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tering (chapter 5) helps users refine queries for navigational goals that are
ambiguous.

2.2 Search Statistics: How Users Search

To help users search the web more effectively, it is important to know how
users search, so that evaluations are realistic and methods do not make
unrealistic assumptions about users.

Researchers have conducted user studies and analyzed query logs to
identify how users search and their level of success [10, 94, 158]. The most
recent publicly available query logs are the AOL query logs released in
2006 by AOL [139], which contain 20 million queries from 650,000 users us-
ing a Google powered search engine. Due to the massive backlash against
AOL for violating privacy [69], major search engines have not publicly
released any more recent data sets.

Typically, users use very short queries with fewer than three keywords.
Over the first half decade of the web, there was an increase in session in-
teractivity, query length, and range of information needs [94]: evidence
that users were becoming more proficient at search. Initially, comprehen-
sive query formulation was rare, query modification atypical, and queries
were particularly short [10]; in 1998, the mean query length was 2.35 [158]
and just 22.4% of queries were refined [94]. Since 2002, search engine us-
age has stabilized and query refinement has become more common; in
2002, the mean query length was 2.92 and 52.5% of queries were refined
[94] and since 2002, the mean query length has stayed around 3.2

Users rarely look beyond the first result page. The fraction of queries
where the user viewed just the first result page was 85.2% in 1998 [158],
72.8% in 2002 [94], 81% in 2003 [12], 79% in 2004/2005 [12], and 78.3% in
2006 [139].

22.7 in 2004/2005 [12], 2.75 in 2006 (from my analysis of the AOL query logs), and 2.98
in 2007 [143]



22 CHAPTER 2. BACKGROUND

The use of advanced Boolean query operators such as +, -, and, or, and
not is decreasing. The number of queries containing Boolean operators
was 6% in 2002 [94], 2% in 2004/2005 [12], and 0.23% in 2006.3 The phrase
operator “ ” is more widely used with 14% of queries using it in 2002 [94].
None of the queries in the AOL query logs contain the phrase operator,
indicating that it was removed when the queries were transformed.4

The experiments in this thesis use short queries without advanced Boolean
operators and use evaluation measures that focus on the quality of the first
result page.

2.3 Hard Searches

To improve relevancy for hard searches and to help users refine queries for
hard searches it is useful to know which searches are hard. This section
identifies the frequency of hard searches and their relative difficulty, the
types of search that challenge users, the types of query that are difficult
for users to refine, the factors that affect search difficulty, and finally, how
experts refine hard searches.

2.3.1 Frequency and Relative Difficulty

On current search engines, many searches are easy for users, but the few
hard ones are significantly harder and consume all their time. 72% of
searches are solved in under 5 minutes with 48% requiring no refinement
[94] (my analysis of the more recent AOL query logs found search engines
have improved and it is now 79% and 56% respectively). However, users
spend the majority of their time refining the relatively few hard queries:
the hardest 20% of searches consume 80% of the user effort, as measured

3From my analysis of the AOL query logs.
4The queries are all in lower case, so they were probably pre-processed or transformed

in some way.
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by time spent searching [94] (my analysis of the more recent AOL query
logs found this to be unchanged).

My analysis of the AOL query logs used the session detection algo-
rithm outlined by He and Göker [85] with a session boundary of 15 min-
utes. There is a tradeoff between a short and a long session boundary: a
short boundary may allocate related queries to different sessions, while a
long boundary may allocate unrelated queries to the same session. A 15
minute boundary is reasonable because He and Göker [85] identified the
optimal range as being 10 to 15 minutes and a more recent study [19] of
the AOL query logs used 20 minutes.

One limitation of these studies and the session detection algorithm is
that they do not indicate whether the user’s search was successful or not.
This limitation may lead to an underestimation of the difficulty: users
might abandon searches quickly because they were unable or unwilling to
refine their query or avoid queries entirely due to the perceived difficulty
of a search. Alternatively, this limitation may lead to an overestimation
of the difficulty: users might continue searching even if their search was
successful because they want more documents that are relevant or they
have multiple search goals that relate to a larger goal such as planning an
overseas holiday.

In 2006 [91], while 82% (up from 68% in 2002) of users usually try re-
fining failed queries, 3% (unchanged from 2002) simply give up when the
first query fails. This suggests that users might abandon hard searches
quickly (the studies underrepresent the problem of hard searches) and fur-
thermore, it suggests that users may be abandoning hard searches even
after devoting significant time to them (the user’s hard search goals are
not being solved).

To test the accuracy of the session detection algorithm for hard searches,
I manually classified a sample of 200 very hard searches from the AOL
query logs. The sample was randomly selected from all searches over 30
minutes (these represent the hardest 2% of searches and 17% of user ef-
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fort), as opposed to all hard searches, because the longer sessions are the
most susceptible to type 3 errors (unrelated searches are allocated into the
same session) [85].

87%±5% (95% confidence interval) of the searches were correctly clas-
sified. Searches classified as correct include those related to a single search
goal (A) and those related to multiple search goals where the majority of
the time was consumed by individual search goals each consuming more
than 30 minutes of user effort (B). Searches classified as incorrect include
those related to multiple search goals where one hard search (usually 10 –
25 minutes) preceded or followed some easy searches (C) and those related
to multiple easy search goals (D). The majority of the correct classifications
were of type A rather than of type B and the majority of the incorrect clas-
sifications were of type C rather than of type D.

On balance, the studies give a reasonable indication of the frequency
(20% of queries) and relative difficulty (80% of user effort) of hard searches
and show that hard search is an important direction for research on im-
proving search.

2.3.2 The User’s Experience

To gain insight into the problems experienced by users, I conducted an in-
formal study of friends, family, and colleagues (the users) during 2005 and
asked them to submit5 details about any hard searches they encountered.
The users understood a hard search to be any for which they could not
easily find relevant results. Most users were surprised to learn how often
they encountered hard searches and how frequently their searches failed.6

There were three types of user: novice, typical, and experts. The group
mostly consisted of typical users. The novice users rarely used computers
or the internet and generally felt search was difficult and believed they

5anonymously via a web interface
6The exception was novice users who admitted upfront that they found most searches

hard.
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lacked understanding of how to use search engines properly — they gen-
erally stated upfront that most searches were hard and in practice had
problems with many searches that would be easy for typical users. The
typical users were confident and generally felt search was easy and falsely
believed they knew how to make best use of search engines — they gen-
erally stated upfront that they could always find what they want, but in
practice they had problems with a lot of hard searches and this surprised
them. The expert users knew how search engines operate and had tricks to
get the best from them — they generally admitted they encountered some
hard searches, but that they were rare “1 out of 10 searches”.

Users conduct searches for a variety of reasons and one important dis-
tinction is whether the reason for searching is important or unimportant.
Most searches are unimportant (e.g. Who was the director of E.T.?) and
when users do not immediately find relevant results (e.g. Who was the ac-
tress in the film from the 1980’s that had a dog in it?) they quickly abandon
the search and quickly forget the search failed. Other searches are impor-
tant (e.g. What should I do if my child has swallowed poison?) and when
users do not find relevant results they either keep searching or become
dissatisfied.

Most users only reported the important searches they found hard —
the searches to which they devoted a lot of time. On retrospect, most users
(once becoming more aware of their own search habits) admitted they of-
ten encountered unimportant searches that were hard and that previously
they overlooked them.

The important searches the users found hard included a wide range
of topics such as medical information (e.g. What condition do I have?),
information about an expensive or long-lasting purchase (e.g. What are
the problems with this car?), technical information (e.g. What are this mi-
crochip’s power requirements?), and research (e.g. Who was my great
great great grandfather’s wife?).

The hard searches from the AOL query logs (those over 30 minutes)
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were predominantly important searches and featured a similar range of
topics to those in the informal study — suggesting users generally have
similar experiences to those in the study and that users probably were
experiencing difficulties refining many of the hard searches identified in
the AOL query logs. Among others, the topics of hard searches in the
AOL query logs include medical information, information about signifi-
cant purchases (e.g. What kind of wood is best for a new deck?), technical
information (e.g. How to use a specialized ruler? — this user spent 90
minutes seeking this information), tax and legal information, specialized
products (e.g. Where can I buy oversized shoes? — this user also spent
90 minutes seeking this information), financial or real estate information,
and research (e.g. Where is my long lost friend now?).

The following sub-sections (2.3.3 and 2.3.4) generalize the types of prob-
lem and the hard searches encountered by the users in the informal study
and the hard searches from the AOL query logs.

2.3.3 Problematic Queries

While the hard searches conducted by users span an enormous range of
search goals, the queries users construct to communicate these goals ex-
hibit a small range of problems. This section describes eight different sit-
uations where queries can have problems: ambiguous keywords, missing
aspects, broad search goals, narrow search goals, multiple aspects, impre-
cise keywords, higher order constraints, and natural language.

2.3.3.1 Ambiguous Keywords

Queries with ambiguous keywords have multiple interpretations and find
irrelevant documents related to other search goals. For example, “Jaguar”
may refer to cars, animals, or a Macintosh operating system, among oth-
ers.

Refinement generally involves adding keywords to specify the rele-
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vant interpretation. Some ambiguous queries such as “Jaguar” are easy
for most users to refine (only novice users experience any difficulty refin-
ing these), but could still be made even easier to refine. Other ambiguous
queries such as “mobile phone usage cuba”, which may refer to the rules
surrounding their use or to the number of people using them, are hard
for even experts to refine because obvious refinements such as “number of
mobile phones in cuba” are also problematic.7

2.3.3.2 Missing Aspects

Queries with missing aspects do not express some component of the user’s
search goal and find irrelevant documents related to other search goals.
For example, “Jaguar car” is problematic if the user wanted to find Jaguar
car clubs, because the query does not express the club component and it
may find irrelevant documents such as dealers selling cars.

Refinement generally involves adding keywords that correspond to the
missing aspects. The problem is that simply adding keywords can some-
times create a query with different problems such as a narrow query.

2.3.3.3 Broad Search Goals

Queries for broad search goals often contain just a few keywords and find
irrelevant documents related to a wide range of narrower search goals.
For example, “car” should be a good query for a user wanting general
information about cars, but this query mostly finds places to buy cars (a
narrower version of the user’s goal).

Refinement is often difficult because there are no obvious keywords to
add and terms like “information” are not helpful as they are widely used
— “car information” finds car safety information and different places to

7The keyword “number” is ambiguous (it may refer to phone numbers such as 911),
the query has multiple aspects, and it uses natural language (to signify the relationship
between number and mobile phones).



28 CHAPTER 2. BACKGROUND

buy cars (those suggesting you ask them “if you need any more informa-
tion”). Experts sometimes use the Boolean operator not to exclude irrele-
vant documents, but this can lead to the exclusion of relevant documents
too.

2.3.3.4 Ambiguous Queries

Queries with ambiguous keywords, queries with missing aspects, and
queries for broad search goals have different causes, but share a common
refinement strategy — the query needs narrowing to exclude irrelevant
documents that relate to other search goals. Due to this similarity, the re-
mainder of this thesis uses the term ambiguous queries to encompass all
three types of problematic query and uses ambiguous keywords, missing
aspects, and broad queries to refer to the individual types where neces-
sary. Chapters 5 and 6 introduce methods that help users refine ambigu-
ous queries.

2.3.3.5 Narrow Search Goals

Queries for narrow search goals often contain too many keywords and
may find no results because no documents contain all the keywords. For
example, “reflection TargetInvocationException [protected method] ashx
cassini”8 finds no results, despite the existence of relevant documents and
even though none of the query terms is redundant or irrelevant to the
user’s search goal (to find information about a particular programming
error), because no documents contain all the selected keywords.

Refinement generally involves removing some keywords, but some-
times this approach is unsuccessful because it can lead to a query with
missing aspects. Finding the right balance between aspect coverage and
the number of keywords is troublesome and sometimes impossible. The
solution is to create an entirely new query, but typical users often just cre-

8The square brackets around [protected method] indicate this is a phrase.
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ate another problematic query with too many keywords, missing aspects,
or a different issue entirely.

Longer queries contain more information about the user’s search goal
and should produce better results than short queries. Chapter 6 introduces
the Query Aspect Approach and outlines how this approach could be used
to take advantage of the additional information in queries with too many
keywords to automatically construct simpler queries.

2.3.3.6 Multiple Aspects

Queries with multiple aspects sometimes have underrepresented aspects
that fail to narrow the range of retrieved documents. For example, “tun-
nel disaster” finds documents related to all disasters in tunnels including
both those during construction and those during subsequent use. “tunnel
construction disaster” should be a good refinement for finding documents
about disasters that occurred during construction, but it fails to narrow
the results because both relevant and irrelevant documents are likely to
contain the term “construction”. For example, irrelevant documents may
contain the phrase “Construction was completed in”.

Typical users find it challenging to refine queries with underrepresented
aspects, as they generally do not understand the problem. Refinement of
these queries is time consuming, even for experts, because trial and error
is normally necessary to discover effective refinements. The problem is
that the difference between relevant and irrelevant documents is subtle,
because all the retrieved documents are within the vicinity of the query’s
general topic area.

Queries contain information about the user’s search goal and not merely
information about what terms should occur in relevant documents. Chap-
ter 6 introduces a method that automatically modifies queries with under-
represented aspects to improve performance.
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2.3.3.7 Imprecise Keywords

Queries with imprecise keywords do not express the user’s search goal
using the most accurate terms. For example, if a user wanted information
about heart attacks, the query “chest pain” will find less relevant informa-
tion than “acute myocardial infarction”.

Refinement can be easy or hard. Some initial queries such as “chest
pain” put the user on a path to discovering more precise terms, but this is
not true of all queries with imprecise keywords. For example, “query re-
finement” is a reasonable starting point when seeking research on improv-
ing queries, but it finds irrelevant documents related to using search en-
gines, which do not help the user discover the more precise phrase “query
expansion”, which is used within the research literature.

While helping users learn keywords that are more precise is beyond
the scope of this thesis, the methods in the thesis that help users refine
ambiguous queries also help users understand the result set, which can
help users refine queries with imprecise keywords more quickly.

2.3.3.8 Higher Order Constraints

Queries with higher order constraints try to specify meta-characteristics
of relevant documents. For example, “maths for 9 year olds” seeks doc-
uments written for a particular audience. Users find relevant documents
for these queries when authors intentionally satisfied the constraint and
consequently included detail of the constraint in the document. However,
some authors may not explicitly detail the constraint or even if they do,
might use different terminology. For example, an author may use “3rd
grade” instead of “9 year olds”. Generally, documents satisfy higher order
constraints unintentionally; consequently, many relevant documents will
not detail the constraint and queries with higher order constraints will fail.
An example would be finding articles on a specific topic with a particular
political bias such as left-wing or right-wing.
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2.3.3.9 Natural Language

Queries using natural language often contain questions or specify relation-
ships between query terms. For example, “What is the defining character-
istic of the dark ages?” specifies a question and “hotels between $100 and
$150 in Sydney” contains a relationship between different query terms. As
with higher order constraints, when document authors have intentionally
sought to answer a question or to satisfy a relationship, their documents
will explicitly detail the question or relationship and therefore, queries
using natural language will succeed for common questions and relation-
ships. However, most documents do not explicitly answer questions or
satisfy relationships and natural language queries will fail.

2.3.3.10 Complex Queries

Queries with higher order constraints and queries using natural language
are challenging to refine, because search engines do not support them. Re-
finement generally involves creating a new query that does not use higher
order constraints or natural language, but sometimes that is impossible.

Search engine support for complex queries is an open research ques-
tion, but is beyond the scope of this thesis. However, the methods in this
thesis may inadvertently help users refine these complex queries or may
help users indirectly — by enabling the user to find effective keyword
based queries for their search goal and thereby avoid the need to use a
complex query.

2.3.4 Factors affecting Search Difficulty

This section describes six factors that affect the difficulty of a particu-
lar search, including three extrinsic factors (search experience, document
complexity, and popularity) and three intrinsic factors (domain knowl-
edge, corpus knowledge, and search specificity). These factors are orthog-
onal to the problematic queries discussed in section 2.3.3 and their impact
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on a particular search depends on the corpus, the user, and the search en-
gine as shown in table 2.1.

Table 2.1: Six factors affect search difficulty and their influence depends on the

user, the corpus, and the search engine.
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Extrinsic
Factors

Search Experience
Document Complexity
Popularity

Intrinsic
Factors

Domain Knowledge
Corpus Knowledge
Search Specificity

Extrinsic factors depend on the search engine, while intrinsic factors
are independent of the search engine. With improvements, search engines
can mitigate extrinsic factors. In contrast, search engines cannot avoid
intrinsically hard searches, but they can help users refine their queries to
overcome intrinsic factors. Unfortunately, current search engines neither
mitigate extrinsic factors nor assist users with intrinsic factors.

2.3.4.1 Search Experience

Users who are inexperienced with search and the query model used by
search engines will find it harder to construct effective queries than experi-
enced users. Any user may construct queries that use too many keywords
(for narrow search goals), use too few keywords (for broad search goals),
directly specify higher order constraints, or use natural language. How-
ever, experienced users will quickly identify the problem and try refining
their query, while inexperienced users may struggle, because they may not
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understand why their query failed and novice users may not even know
that refining their query might help.

2.3.4.2 Document Complexity

It is harder to construct effective queries for searches that seek long com-
plex documents than it is for short simple documents. Long documents
contain a wider range of terms and therefore, are more likely to contain
ancillary terms that do not reflect the core focus of the document.

When seeking long complex documents, queries with multiple aspects
are more likely to have underrepresented aspects, and queries that use im-
precise keywords or have narrow search goals are more likely to retrieve
irrelevant documents.

2.3.4.3 Popularity

It is harder to construct effective queries for rare information (few docu-
ments) than popular information (many documents). For example, “in-
stall windows” finds information about the operating system, but nothing
about the windows that contain glass. Many different authors write popu-
lar information in many different ways, and consequently, there is a higher
probability that relevant documents contain the query’s keywords. As in-
formation becomes rarer, fewer authors write about it and consequently
there are fewer effective queries.

When seeking rare information, ambiguous queries and queries that
use imprecise keywords are more likely to find irrelevant documents, nar-
row search goals are more likely to find no documents, and queries with
multiple aspects are more likely to have underrepresented aspects.

2.3.4.4 Domain Knowledge

Users who are domain novices will find it harder to construct effective
queries than domain experts. Domain experts write the most relevant in-
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formation using domain specific vocabulary; novices lacking this vocabu-
lary are more likely to create queries that use imprecise keywords.

2.3.4.5 Corpus Knowledge

Users who are inexperienced at searching for information on a topic will
find it harder to construct effective queries than users that are experienced.
As users search within a topic they learn which irrelevant topics in the
corpus share vocabulary with the relevant topic and which keywords are
most effective at discriminating between the relevant and the irrelevant
topics. Experience at searching for a topic helps users avoid ambiguous
queries and refine them more easily; experience also helps users refine
queries for narrow search goals and queries with underrepresented as-
pects more easily.

2.3.4.6 Search Specificity

It is harder to construct effective queries for general information than spe-
cific information.9 For example, if a user wanted to find the power of the
engine in a radio controlled F16 fighter jet, the query “Evolution .52NX
engine displacement” that specifies a specific engine will be more effective
than the more general query “radio controlled F16 fighter jet engine dis-
placement”. Note the distinction between specific (used here) and narrow
(used in section 2.3.3.5) — specific relates to a single aspect (search goal
component) whereas narrow relates to multiple aspects.

Specific information is easier to find because the keywords that de-
scribe specific information are generally less ambiguous and consequently
some aspects (as in the earlier F16 example) and some higher order con-
straints (as in the following example) are often implicit and therefore un-
necessary. For example, if a user wanted to find information about teach-

9Assuming the user has the required domain knowledge to express their search goal
using a precise query.
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ing mathematics to children, the query “teaching fractions” and other simi-
larly specific queries are more effective than the more general query “teach-
ing mathematics”, because the more general query might retrieve irrel-
evant documents about teaching mathematics to secondary and tertiary
students.

2.3.5 Refinement Strategies

Query refinement is inevitably trial and error, but there are numerous
strategies to improve the probability of finding an effective query. These
strategies typically involve examining retrieved documents, identifying
and categorizing irrelevant documents, determining why queries failed,
and determining keywords that discriminate between relevant and irrel-
evant documents. Novice users are generally unaware of these strategies
and predominantly use trial and error, whereas typical users often make
use of more systematic approaches when trial and error fails.

For complex queries, users often employ a multi-step approach. In-
stead of trying to find relevant documents directly, users try to find docu-
ments that will link to relevant documents. For example, someone looking
for hotels within a certain price range may look for travel sites or destina-
tion guides that they expect would provide this information. From those
sites, the user can find links to specific hotels (the relevant documents) that
meet their criteria.

Unfortunately, for many hard searches, none of these approaches is
successful. My study found that search experts have another refinement
strategy (termed refinement by semantically orthogonal keywords in this
thesis) for hard searches. Instead of constructing queries that describe
what they want to find, experts construct queries that contain the terms
they expect to find on relevant documents. For example, the term “dona-
tion” in the “wildlife extinction donation” query from section 1.2.3 is irrel-
evant to the user’s search goal of finding efforts to stop extinction, but it is
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effective since many efforts to stop extinction seek donations. Norvig [134]
also identified this strategy and suggests refining the “mobile phone usage
cuba” query from section 2.3.3.1 using the terms “worldwide” and “table”
because there probably exist relevant documents that contain a big table
listing usage around the world.

To humans, queries with semantically orthogonal keywords can look
semantically meaningless and at least semantically deceptive, because they
often have a completely different meaning from both the descriptive query
terms and the user’s search goal. However, since the semantically orthog-
onal keywords usually co-occur with descriptive terms on relevant docu-
ments, they are often very effective and help search engines discriminate
between relevant and irrelevant documents. The disconnect between the
queries that are meaningful to users and those that work well with search
engines is due to the differences between the search models used by hu-
mans and search engines (section 2.5.1 discusses these differences).

The problem with refinement by semantically orthogonal keywords
is that it requires a lot of user effort and it requires substantial domain
knowledge that users may not possess. Chapter 6 presents a method that
automatically identifies semantically orthogonal keywords and then uses
them to refine queries with underrepresented aspects and to suggest re-
finements to users for ambiguous queries.

2.4 Search Engines

2.4.1 Types

There are several different approaches to web search including unassisted
keyword search (e.g. Google), assisted keyword search (e.g. clustering),
query by example (description, snippet, or page), and directory based
search (e.g. Open Directory Project and Yahoo10) [211, 56]. Unassisted

10until 2005
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keyword search involves entering keywords and reviewing a list of doc-
uments that contain the query’s keywords. Assisted keyword searches
are similar to unassisted keyword searches, but the search system helps
the user refine their query by suggesting additional keywords, query re-
finements, or by organizing the results. Query by example searches are
similar to unassisted keyword searches, but instead of taking keywords
as input, they take a description, snippet, or relevant document, and find
similar documents. Directory based search involves navigating a human
constructed hierarchical categorization of documents organized by topic.

Query by example is most suited to finding additional documents once
the user has already discovered some relevant documents. Bruza et al. [22]
showed that directory based search is ineffective: it does not offer in-
creased relevance and takes longer than keyword search. This thesis fo-
cuses on improving unassisted and assisted keyword search systems.

2.4.2 Components

A search engine can be broken down into three components: the crawler,
the indexer, and the retriever [20]. The crawler recursively navigates the
web, downloading documents, and identifying new URLs to visit from
those previously visited. Next, the indexer parses and cleans the docu-
ments, turning them into an index that provides an efficient lookup for
the chosen document model. Finally, given a query, the retrieval system
will use the index to find documents that contain the query terms and rank
them according to the chosen relevancy-ranking algorithm.

This thesis presents algorithms that sit atop existing search engines
(search extensions), taking the query and the output of the underlying
search engine as input. Nonetheless, some details of the underlying search
engine are still relevant. For example, many search extensions clean and
index the retrieved documents using approaches similar to those used by
typical search engines. The following sub-sections provide relevant back-
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ground information on the three search engine components.

2.4.3 Document Cleaning and Pre-processing

Preparing documents for indexing typically involves three pre-processing
steps: tokenization, stop word removal, and stemming [150]. The extent to
which search extensions implement these steps varies widely with some
skipping entire steps.

Web pages are messy, filled with HTML tags, punctuation, and other
superfluous information such as comments. Tokenization is the process
or removing them to get the raw text and most approaches use tokeniza-
tion, although some search extensions [8] do make use of the additional
information and structure.

Another superfluous element, when natural language analysis is not
required, is stop words, which are very common and uninformative words
such as “the”, “it”, and “on”. Stop word removal is the process of removing
stop words or replacing them with a placeholder, the latter preserves word
order and enables phrase queries; stop word removal reduces the index
size and improves performance, although it can cause problems with some
queries, for example, “to be or not to be” [31].

For many retrieval algorithms and search extensions, performance im-
proves when words with the same semantic intent are treated identically.
The most common approach to achieve this is stemming, typically using
the Porter stemming algorithm [141], which reduces words to their root
form, for example, “dogs” becomes “dog”. Generally, methods use only
light stemming to reduce the likelihood of changing the semantic intent
of terms. However, when words are polysemous even light stemming can
be problematic. For example, sock and SOCKS share the same root, but
refer to footwear and a network protocol respectively. While this problem
somewhat dissuades the use of stemming in web search [31], stemming of-
ten works well in search extensions that operate over a result set because
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the restricted scope filters many polysemous terms.

2.4.4 Document Models

There are many document representations; the three most common mod-
els differ by their mathematical basis: the Boolean model, the vector space
model, and the probabilistic model. Richer models generally improve
result quality at the cost of performance by resolving incorrect assump-
tions of the simpler document models. For instance, the Extended Boolean
model provides adaptive strictness for the query operators (AND and OR)
[153] and Latent Semantic approaches account for term inter-relatedness
[54].

Processing web scale datasets (tens of billions of pages, with many ad-
ditions, updates, and deletions everyday) requires efficient indexing algo-
rithms with complexity proportional to the size of the corpus. The richer
models, particularly those incorporating term inter-relatedness are com-
putationally intensive: latent semantic indexing uses the optimal rank-r
approximation of the full Singular Value Decomposition matrix and com-
puting this has complexity O(dtr), where d is the number of documents,
t is the number of distinct terms, and r is the rank of the resulting model
[18]. While the probabilistic model and other more advanced models are
frequently used in information retrieval on smaller corpora (such as those
used in TREC), applying these to web scale datasets is still intractable [31].
Therefore, current search engines still use the simpler models: as of 2007
[71], Google still uses a vector space model11 based on individual words
and the inverted index [31, 53], much as it was originally 10 years ago [20].

The Boolean model is the simplest: it models documents as sets of
terms (words or phrases). The vector space model [212, 166, 155, 211, 57] is
more sophisticated: it models documents as vectors of term weights. Var-

11Albeit with many non-general enhancements, such as modelling a limited number of
phrases such as “San Francisco”, perhaps using one of the richer models.
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ious weighting algorithms exist [120]; in the classical vector space model,
the weights are given by tf-idf (Term Frequency • Inverse Document Fre-
quency) [145, 86], which considers local and global document properties
[152]. The probabilistic model also represents documents as vectors, but
differs by using a probability based retrieval mechanism. The methods
presented in this thesis use the Boolean and vector space models.

Term Frequency is the number of times the term occurs in a document,
normalized to account for the length of the document. Document Fre-
quency is the number of documents containing the term. Inverse Doc-
ument Frequency is the logarithm of the result of dividing the number
of documents by the Document Frequency of the term in the documents.
Typically, Term Frequency is a local document property that relates to an
individual document, while Document Frequency and Inverse Document
Frequency are global document properties that relate to the corpus. How-
ever, they find uses in other contexts where the reverse is true. For exam-
ple, the Document Frequency of a term in the first N pages of a result set
is a local document property.

2.4.5 Query Interpretation and Search Indexes

Each document model has its own retrieval mechanism. The Boolean
model [179, 150] performs an exact match, finding the set of documents
that contain all the terms in the query. The vector space [120] and proba-
bilistic models [120, 179, 150] perform a best match, finding a ranked list
of documents that are most similar to the query. In best match systems,
any document with at least one query term has a non-zero score; however,
for efficiency, current search engines only return documents containing all
query terms.

The efficiency of retrieval depends on the available index. For the vec-
tor space model, indexing constructs an inverted index that maps terms
to documents, ideal for efficient retrieval. Search engine indexes also store
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the position of each term; this enables the reconstruction of documents
from the index and facilitates phrase queries and proximity queries [31].
Phrase queries find documents containing a particular sequence of words
such as “neural network” and proximity queries find documents that con-
tain words within a certain distance of each other.

Some search extensions enumerate many phrases and require an effi-
cient index that maps all phrases less than a certain length to documents.
The inverted index is too slow for that, but fortunately, for the small result
set segments analyzed by search extensions, the suffix tree model provides
an effective index [212].

2.4.6 Relevancy Ranking

Relevancy ranking or scoring is the most important part of a search en-
gine, because it determines the output seen by users. At its simplest, rel-
evancy ranking uses a similarity function with two inputs (the corpus of
documents and the query) and the output is the documents sorted in de-
scending order of similarity (or score), where the similarity is measured
between the document term vector and the query term vector.

Researchers have tried a wide range of similarity functions and in fact,
most clustering similarity functions are suitable: at its core, relevancy
ranking is separating documents into two clusters, called relevant and ir-
relevant, with the query providing an exemplar of a relevant document.
Perhaps the most widely used similarity function for the vector space
model is Cosine similarity (cos(d, q)) [120, 150, 14].

cos(d, q) =
d • q
|d||q|

where d is the document term vector and q is the query term vector. Co-
sine similarity is superior to using the magnitude of the vector difference
because it normalizes document length [120].

For web search, using only Cosine similarity to rank the documents
will produce a poor ranking, because it is typical for millions of documents
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of widely varying quality to contain all the query terms and additionally,
spammers and others such as those with commercial interests are trying
to game the systems to get the top rankings.

Current search engines go well beyond a single ranking measure and
most likely use a soft conjunction of hundreds of features[120]. Finding
the right combination of features is near impossible for humans; one solu-
tion is to provide labelled examples of relevant and irrelevant documents
for various queries, thus creating a 2-class classification task that standard
machine-learning algorithms can solve [120].

There are two kinds of features: static features and dynamic features.
Static features are fixed12 and independent of either the query (most com-
mon) or the corpus (less common). For example, PageRank [20, 58] and the
age of the domain hosting a document are independent of the query, while
a rule that queries for addresses should return links to Google maps is in-
dependent of the corpus. Dynamic features change with every query and
generally depend on both the query and the corpus, for example, similar-
ity scores such as Cosine similarity are dynamic features. Other dynamic
features include proximity or position of query terms, font, capitalization,
and location (title, URL, heading, etc.) [20].

2.5 Limitations of Typical Search Engines

Currently, typical search engines have a number of limitations that make
some searches harder than necessary. Queries with narrow search goals,
broad search goals, multiple aspects, higher order constraints, or natu-
ral language are only problematic because of search engine limitations,
while queries with ambiguous keywords, missing aspects, or imprecise
keywords are more problematic than necessary because of search engine
limitations.

This section describes three limitations of typical search engines. The

12although they will be recomputed and may change periodically
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first limitation is that users and search engines have different query mod-
els — they interpret queries differently. The second limitation is that search
engines do not help users to refine queries. The final limitation is that
search engines use popularity as a proxy for authority.

2.5.1 Different Query Models

Users and search engines typically have different models of how to in-
terpret queries; consequently, the documents retrieved by search engines
in response to a query sometimes do not match the user’s expectations.
Users naturally consider the semantics, presence, absence, and order of
keywords to be significant, and expect understanding of constraints and
natural language. On the other hand, typical search engines merely re-
trieve all documents that contain all query terms.

To users, the semantics of the query terms are important. Users expect
the retrieved documents to contain information related semantically to the
query terms, but not necessarily the query terms themselves. For example,
documents that do not include the term “attacks”, but include semantically
related terms such as “maul”, “injury”, and “fatal” may be relevant to the
query “black bear attacks”. As a result, users expect that adding terms
might improve the accuracy of a query. In contrast, search engines ignore
semantics and miss relevant documents users expect such as those without
“attacks”, because search engines require documents to contain all query
terms. Consequently, queries with narrow search goals are problematic,
as at best, longer queries miss relevant documents, and at worst, longer
queries find no results at all.

To users, the presence of each individual query term is purposeful.
Users expect the retrieved documents to focus substantially on all the
query terms and not just parts in isolation. In particular, documents may
contain a query term without focusing substantially on it. For example,
a document that principally discusses the construction of transportation
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tunnels may be irrelevant, even if it contains all the terms in the query
“transportation tunnel disasters”, because merely mentioning that disas-
ters occur in tunnels does not put a substantial focus on disasters. In
contrast, search engines ignore the purpose of query terms; consequently,
queries with multiple aspects sometimes have underrepresented aspects
and retrieve irrelevant documents that focus on parts of the query in iso-
lation.

To users, the absence of a query term is purposeful. Users expect the
retrieved documents to match the broadest interpretation of the query and
not sub-topics of the query. In particular, if a user sought a particular sub-
topic, they would add related query terms (missing aspects not withstand-
ing). For example, a user wanting general information about cars might
use “car”, while a user wanting to buy a car might use “buy car”. In con-
trast, search engines ignore the absence of query terms and sometimes find
documents related to sub-topics such as documents about buying cars for
the query “car”; consequently, queries with broad search goals are prob-
lematic.

To users, the order of the query terms is significant and different order-
ings communicate different goals. Users expect the retrieved documents
to reflect the phrases in the query and not merely the individual words,
similarly they do not expect the retrieved documents to reflect phrases not
present in the query. For example, the query “air new zealand” should find
the airline, but “new zealand air” should not (it should find documents
about breathable air such as documents about the quality of air in New
Zealand). In contrast, search engines generally13 ignore the order of the
query terms. Given this, it is unsurprising that Huang and Efthimiadis [89]
found that term reordering is not a beneficial refinement strategy and that
any ordering of the terms “air”, “new”, and “zealand” finds the airline.
Consequently, queries with multiple aspects (“new zealand” and “air”)
sometimes have underrepresented aspects (“air” in “new zealand air”) and

13Search engines do model a limited number of phrases such as “San Francisco” [71].
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retrieve irrelevant documents that focus on something completely differ-
ent (an airline).

To users, higher order constraints and natural language are meaning-
ful. In contrast, search engines ignore them, and consequently, queries
that use higher order constraints or natural language are problematic.

2.5.2 No Refinement Help

Typical search engines do not provide refinement suggestions, ignore the
iterative nature of search, and use flat unstructured result sets that hinder
the user’s ability to decipher why queries failed.

When a query finds few or no relevant results, such as any problematic
query, users must refine their query to find relevant documents. Query
refinement is challenging because it involves both understanding why the
previous query failed and generating a new query to overcome those limi-
tations. By improving search engine query models to match user query
models, there will be fewer problematic queries, but there will still be
problematic queries to refine, including queries with ambiguous keywords,
queries with missing aspects, and queries with imprecise keywords. Un-
fortunately, typical search engines do not provide refinement suggestions
and users must refine all problematic queries by themselves.

Query refinement is an iterative process in which users try a series of
queries, looking for one that finds relevant documents. Each successive
query communicates more about the user’s search goal. The later queries
communicate additional information both explicitly by adding new key-
words and implicitly by inferring that previous result sets did not contain
relevant results. Unfortunately, typical search engines treat each query in-
dependently, ignoring the iterative nature of search, and therefore, do not
make full use of the information provided by the user about their search
goal.

Refining queries requires understanding why the previous query failed,
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which requires knowing what irrelevant results the query retrieved. There
are usually many different classes of irrelevant results, each with many
documents in the result set. Typical search engines provide only flat un-
structured result sets, which provide no organization to the result set and
no guidance on the range of retrieved documents. Consequently, users
must either look through many pages of results and many irrelevant doc-
uments to identify the distinct classes before refining the query or refine
the query many times, each time identifying and removing one distinct
class. Unfortunately, both approaches are tedious and time consuming.

2.5.3 Hide Less Popular Information

Typical search engines use popularity as a proxy for authority, but this
makes less popular information even harder to find.

For most queries, there are millions of matching documents, but the
quality of these documents is highly variable. Search engine relevance
measures use a number of factors to judge the quality of a document to
help rank well-researched, trustworthy, high quality documents above
poorly-researched, untrustworthy, low quality documents. One factor that
has proven success as a proxy for quality is popularity. Popularity is de-
termined by link analysis methods such as Google’s PageRank [20, 58] by
counting the number of incoming links to each document, weighted by the
authority of the sites on which those links originate. The idea is to lever-
age the wisdom of crowds [173] — documents with many links from high
quality documents are themselves likely to be of high quality, because au-
thors of high quality documents would not link to low quality documents.

The problem with ranking by popularity is that it exacerbates the dif-
ficulties caused by the popularity factor discussed in section 2.3.4.3. Pop-
ularity measures are very successful at ordering relevant documents by
quality, but search engines often retrieve both relevant and irrelevant doc-
uments. When the irrelevant documents relate to topics that are more pop-
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ular than the search goal, the irrelevant documents often dominate the
search results and even if the user looks through many result pages, they
may find no relevant documents. Consequently, when ranking by popu-
larity, ambiguous queries are more likely to find exclusively documents
related to a popular interpretation of the query, rather than a range of doc-
uments for different interpretations. Queries with broad search goals are
more likely to find popular, but irrelevant sub-topics. Queries with multi-
ple aspects are more likely to find popular related topics that are irrelevant.
Rare information that would normally be hard to find may become almost
impossible to find.

Ranking by popularity also makes search engines susceptible to at-
tempts to manipulate search rankings. Websites have incentives to be at
the top of search results14, regardless of their relevance. Therefore, web-
sites try to manipulate search rankings for their own gain and popularity
provides a mechanism for them to do this.

2.6 Addressing Search Engine Limitations

While users can compensate for the limitations of search engines, ulti-
mately, improvements to search engines will address the limitations. The
primary goal of this thesis is to develop some of those improvements. This
section describes how users compensate for the limitations, describes the
mechanisms provided by search engines to help users compensate, and
identifies the limitations addressed in this thesis.

2.6.1 Compensating for Limitations

Users can compensate for the limitations of search engines by adapting
to the search engine’s model as they gain search experience. In practice,

14as this means more traffic to their sites, and ultimately greater revenue through sales
or advertising
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most users have probably adapted to the search engine query model —
Strohmaier et al. [170] found that in the AOL dataset [139] between 96.99%
and 98.31% of queries use an unintentional bag-of-words approach (the
type of queries expected by search engines). The problem is that even once
users gain search experience and understand the true search model, there
remains a cognitive gap — users must translate queries from their natu-
ral query model to the search engine model to formulate effective queries.
While users may prefer this approach for some easy searches as it enables
them to express their search goal in fewer words, for many hard searches
the cognitive gap, for which even experts must compensate, is large and as
shown earlier in this chapter, sometimes even insurmountable. Improve-
ments to search engines will reduce the cognitive gap (making search eas-
ier) and reduce the requisite search experience needed for users to con-
struct effective queries (making search even more accessible).

Although search engines typically only find documents containing ev-
ery query term, users can use the advanced Boolean query operators such
as and, or, and not to specify that some terms are optional. However, these
queries are tedious to construct15 and when used inappropriately, they of-
ten reduce relevancy. Additionally, Eastman and Jansen [61] found that
even when used appropriately, query operators do not improve relevancy
— search engines do not take advantage of the additional information con-
veyed by query operators.

Although search engines typically ignore the order of the query terms,
users can use the phrase operator to specify that some terms must occur to-
gether. While useful in some instances, in general, this mechanism fails to
correct the interpretation of queries with different term orders. For exam-
ple, even when “new zealand” is entered as a phrase separate from “air”,
the query still finds the airline. An alternate refinement strategy combines
the phrase operator with the not operator to exclude the phrase “air new

15Specifying that documents must contain at least three out of five keywords requires
10 sets of 3 keywords to be correctly grouped using Boolean operators.
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zealand” from the “new zealand air” query. This succeeds in removing
documents related to that particular airline, but results in a query that
finds other irrelevant documents that are more popular. To find the rele-
vant documents it is necessary to exclude documents relating to air trans-
port, the air force, NZ On Air, Apple MacBook Air, health spas, freight,
air guitar, fighter planes, cinemas, travel, and navigation, among others.
Furthermore, this refinement strategy only succeeded because this was an
easy search; for hard searches, this refinement strategy typically fails.

2.6.2 Recent Developments at Google

Since beginning this thesis in earlier 2005, typical search engines such as
Google have continuously improved. This section details three develop-
ments at Google since 2005 that combat the limitations of typical search
engines.

Figure 2.1: Google suggests queries that are similar to the users.

Since late 2006 [172], Google16 has been showing queries related to the
current query at the bottom of the result page. For example, figure 2.1
shows the queries related to the ambiguous query “jaguar”. While these
do serve as refinement suggestions, they are not particularly useful. The

16Yahoo and Microsoft’s Bing also have this feature.
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problem is that for most queries, the suggestions are not closely related.
For example, the suggestions for “asp.net c# reflection” include “asp.net
c# foreach” and “asp.net c# string”, which while broadly related to the
query, bear no relation to a key part of the query (the term “reflection”).
The suggestions are most useful for ambiguous queries, but even for the
simplest ambiguous queries, they are not particularly useful. For example,
while the suggestions for “jaguar” are useful for users seeking the animal
interpretation, the refinements suggested for users seeking the car inter-
pretation are poor and there are no suggestions at all for users seeking
other interpretations such as the Macintosh operating system, or the Atari
games console.

Figure 2.2: Google allows users to choose between more or less shopping sites.

Since late 2009 [35], Google has let users choose to view results with
fewer shopping sites or more shopping sites as shown in figure 2.2. This
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addresses a problem, caused by ranking documents using popularity, for a
particularly common type of hard search — searches for product informa-
tion from sources other than shops. Many users reported hard searches of
this type in my study and for the most part, this recent addition to Google
addresses those hard searches. However, while the method is useful, it
does have two main limitations — the user has to choose when to apply
it and it is highly specific. It only helps when shopping sites dominate
the search results and not when other irrelevant documents dominate the
results for the same reason (popularity).

In early 2010, I discovered that since completing the research and ex-
periments for this thesis in early 2007, Google has changed from an exact
match model to a best match model.17 Instead of requiring the retrieved
documents to contain all the query terms, the retrieved documents only
need to contain a subset of them. My recent experiments (early 2010) sug-
gest that although long queries now rarely find no results, adding addi-
tional terms to long queries tends not to increase accuracy or relevancy.
Consequently, Google is not currently addressing long queries by consid-
ering the semantics of the query terms. Therefore, while the change will
be beneficial for novice users that create queries with too many keywords,
the change will generally not help users with hard searches that involve
narrow search goals.

An additional negative consequence of the change from an exact match
model to a best match model is that the refinement by semantically orthog-
onal keywords strategy (discussed in section 2.3.5) employed by experts
is now less effective on Google. This refinement strategy relies on the ad-
dition of query terms to change the meaning of a query, but under a best
match model, adding terms sometimes has no effect on the meaning of a
query.

In the remainder of the thesis “Google” refers to the earlier versions of
Google Search that used an exact match model.

17I could not find any public information on when this change occurred.
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2.6.3 Limitations addressed by this Thesis

The user’s queries provide an upper bound on the performance of search
engines [170], so it is important that search engines make maximum use
of that information. This thesis makes progress towards addressing the
limitations of typical search engines primarily by making better use of the
information contained in the user’s queries.

The Query Directed Clustering approach in chapter 5 uses the seman-
tics of the query terms to guide the construction of clusters. These clus-
ters serve as both refinement suggestions for ambiguous queries and an
overview of the result set that provides structure and aids users in under-
standing why their previous query failed.

The Query Aspect Approach in chapter 6 uses the order, presence, and
semantics of the query terms to better understand queries with multiple
aspects. AbraQ in chapter 6 uses the Query Aspect Approach to make
searches with multiple aspects easier by lessening the impact of document
complexity and popularity on those searches. Qasp in chapter 6 uses the
Query Aspect Approach to suggest refinements. Chapter 6 also outlines
how the Query Aspect Approach could be used to address queries for nar-
row search goals that use too many keywords and to leverage the iterative
nature of search to gain additional information about the user’s search
goal.

Addressing the limitations related to the absence of query terms, higher
order constraints, natural language, and popularity for single aspect queries
is beyond the scope of this thesis. While this thesis does not explicitly
learn from the absence of query terms, the corresponding problems arise
mostly due to popularity, whose impact the Query Aspect Approach re-
duces for queries with multiple aspects. Although popularity for single
aspect queries is still a problem, popularity is generally far less problem-
atic for single aspect queries because they are generally far easier to refine
than queries with multiple aspects. Future research could leverage the in-
formation learned from the absence of query terms to reduce the impact
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of popularity on single aspect queries.

2.7 Search Engine Extensions

Search extensions build on existing search engines using the result set and
query as input. Many types of search extensions exist: some add screen-
shots adjacent to results, others generate new snippets, and still others en-
hance certain results with additional information such as the ratings given
by product reviews. This thesis focuses on search extensions that improve
the quality of search results (automatic query expansion or AQE) and sug-
gest refinements to users (interactive query expansion or IQE).

The research literature describes a variety of approaches for finding
expansion terms, each with its own advantages and disadvantages. This
section summarizes five different AQE and IQE methods: Relevance Feed-
back, Pseudo-Relevance Feedback, Thesauri Expansion, Web Page Clus-
tering, and Query Log Analysis.

Query Directed Clustering in chapter 5 improves Web Page Cluster-
ing by using elements of Thesauri Expansion in a novel way. Chapter 6
explains a novel sixth approach termed the Query Aspect Approach.

2.7.1 Relevance Feedback (IQE)

Relevance Feedback methods [150] select expansion terms based on the
user’s relevance judgments for a subset of the retrieved documents. Rel-
evance Feedback implementations vary according to the use of irrelevant
documents and the method of ranking terms.

Normally, users explicitly identify only relevant documents; Ide [90]
uses two approaches for determining the irrelevant ones. Ide-regular con-
siders documents irrelevant when they are not marked as relevant and
they occur earlier in the result set than the last relevant document. For ex-
ample, when documents four and five are marked as relevant, documents
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one, two, and three are irrelevant, and positions six and later are neither
relevant nor irrelevant. Ide-dec-hi considers just the first non-relevant doc-
ument irrelevant. While not outperforming Ide-regular, Ide-dec-hi is more
consistent and improves more queries [150].

Researchers have considered many approaches for ranking terms, in-
cluding all combinations of document frequency (df), term frequency (tf),
and inverse document frequency (idf). Experiments consistently confirm
that tf-idf performs the best [59].

Relevance Feedback generally improves Recall for queries that retrieve
at least some relevant documents, but cannot do much for hard searches
that retrieve only irrelevant documents. Another disadvantage is that Rel-
evance Feedback places high demands on the user. Users must waste time
checking the relevance of irrelevant documents, and they must make good
judgments, because performance is highly dependent on judgment qual-
ity. In fact, Magennis and van Rijsbergen [114] found that while user se-
lections improve performance, they were not optimal and often fell short
of completely automatic expansion techniques such as Pseudo-Relevance
Feedback.

2.7.2 Pseudo-Relevance Feedback (AQE & IQE)

Pseudo-Relevance Feedback [156], also called Blind or Ad-hoc Relevance
Feedback, is nearly identical to Relevance Feedback. The difference is that
instead of users making relevance judgments, the method assumes the
first N documents are relevant18, enabling Pseudo-Relevance Feedback to
perform AQE.

Pseudo-Relevance Feedback generally improves Recall for queries that
have high Precision [199], but often reduces performance for hard searches
because they have low Precision and Pseudo-Relevance Feedback causes
query drift for queries with low Precision [50].

18Using approximately N=10 provides the best performance [156].
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Pseudo-Relevance Feedback can be adapted to IQE by suggesting the
top ranked terms to users as different refinements. Like Relevance Feed-
back, this relies on user judgments, but the user’s decision is simpler and
performance is potentially greater because the feedback is more precise.
However, as with AQE, the refinement suggestions are typically useful
only when the top ranked documents are relevant.

2.7.3 Thesauri Expansion (AQE & IQE)

Thesauri provide information about the semantic relationships between
terms. Thesauri Expansion [157] approaches use these relationships to
identify expansion terms. As with Pseudo-Relevance Feedback, AQE ap-
proaches add these terms to the query, while IQE approaches show them
to the user as possible refinements.

Human constructed thesauri like WordNet [38, 88] expose an assort-
ment of term relationships. However, most approaches use only a limited
number of these relationships such as synonyms (same or nearly the same
meaning) and hyponyms (is-a) to avoid query drift. Despite that, these
thesauri are not particularly useful for AQE or refinement of hard searches
by IQE because even closely related terms such as synonyms can be poly-
semous and cause query drift. Thesauri are helpful for exploring related
queries using IQE, because the term relationships are useful for construct-
ing queries that are either more specialized or more generalized. Human
constructed thesauri are also helpful when a single term is ambiguous.

The enormous number of documents on the web provides a great dataset
for learning the semantics of terms. A useful alternative to human con-
structed thesauri is global document analysis, which can provide auto-
matic measures of term relatedness. Cilibrasi and Vitanyi [40] introduced a
particularly useful measure called Google distance that uses the co-occurrence
frequency of terms in documents to gauge term relatedness. This thesis
makes use of global document analysis and Google distance to learn the
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semantics of terms.

Global document analysis is useful as it can identify co-occurring terms,
which are potentially valuable for refinement, because semantically or-
thogonal keywords often co-occur with descriptive terms. However, adding
co-occurring terms to a query often causes query drift. This thesis com-
bines co-occurrence information with a deeper analysis of the query or
result set to overcome this problem.

2.7.4 Web Page Clustering (IQE)

Typically, Web Page Clustering methods [201, 136, 122] differ from other
IQE approaches in that selecting a refinement does not change the query.
Web Page Clustering methods provide an overview of the result set by
finding clusters of similar documents; selecting a cluster refines the result
set onto a subset of it. Consequently, typical Web Page Clustering methods
are directly helpful only when the result set already contains some rele-
vant documents. However, they are indirectly helpful more frequently,
because the clusters provide an overview of the retrieved documents and
help the user efficiently understand why a query failed.

There are two methods of using Web Page Clustering to change the
query in a way that is similar to other IQE approaches.19 The first method
is to use the selected cluster’s description, which can simply be the most
common terms in the cluster, to expand the query. The second method
is to use Relevance Feedback, by assuming the documents in the selected
cluster are relevant and that those in other clusters are irrelevant.

Query Directed Clustering in chapter 5 is a typical Web Page Clustering
method that does not change the query.

19I am not aware of any researchers actually using these approaches.
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2.7.5 Query Log Analysis (AQE & IQE)

Query Log Analysis examines the search patterns of users by considering
the documents visited (user preferences and pairwise preferences) and the
sequences of queries performed (query chains) [52, 96, 160]. By general-
izing across many queries, search engines can identify reliable rules that
describe patterns of behaviour that suggest refinements for AQE and IQE.

Search engines can learn which documents are most relevant and which
are potentially irrelevant by analyzing the preference of users for different
results. If most users who search for a given query choose to view the third
result, then the first two results are more likely to be irrelevant. This in-
formation can guide the selection of terms for AQE or guide the relevancy
ranking function to rank result three above results one and two.

Search engines can learn which queries are ambiguous from pairwise
user preferences and learn refinements for them from the user’s query
chains. If one group of users who search for a given query views results
one and five, but another group views results two, four, and nine, then it
is possible that the query is ambiguous and these groups are seeking dif-
ferent interpretations of the query. Further evidence of ambiguity occurs
when subsequent intra-group queries are similar and inter-group queries
are different — the respective queries of each group may correspond to
refinements for the different interpretations. Search engines could use this
information as the basis for IQE and present the queries as refinement sug-
gestions to future users who perform the same query.

Search engines can learn which queries are consistently refined in the
same way from query chains and use AQE to change future queries in a
similar way. This can also be an effective way for search engines to learn
acronyms. For example, many users that search for “oed”, may immedi-
ately search for “Oxford English Dictionary” [96].

Query Log Analysis works best for common searches, because it needs
many similar queries for the generalizations to be reliable. Unfortunately,
hard searches are typically uncommon [19]. This disadvantage is evident
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from Google’s related searches feature (section 2.6.2) that appears to use
Query Log Analysis to show the most frequently occurring searches that
are most similar to the current query, because it produces better results for
common searches such as “jaguar” than for less common searches such as
“asp.net c# reflection”.



Chapter 3

Web Search Evaluation

Evaluating search involves comparing the relative effectiveness of differ-
ent search methods. Different researchers have different goals, different
constraints, and different interests. This diversity has led to numerous
definitions of effectiveness and for each a multitude of approaches to mea-
sure or quantify that effectiveness. This variety of approaches, the trade-
offs between them, and other constraints make selecting an appropriate
evaluation method challenging.

This chapter explores the multitude of approaches to evaluation, ex-
plores the considerations made by researchers in selecting an appropriate
evaluation method, and in particular explains the selection of the evalua-
tion method used by this thesis. The chapter starts very broad by consid-
ering the different criteria used for evaluation. Each subsequent section
narrows the focus onto an element of the preceding section and the chap-
ter culminates in an exploration of the different measures of performance.

3.1 Evaluation Criteria

The evaluation criteria define what it means for one search method to per-
form ”better” than another search method. There is a wide variety of
evaluation criteria [106] and the criteria may be objective or subjective.

59
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Objective measures include response time (the time taken to complete one
query) and capacity (the number of queries a system can execute in one pe-
riod). Subjective measures include relevancy (how closely the documents
relate to the information needs pertaining to the query), quality (how au-
thoritative, accurate, complete, and timely are the documents), and com-
plexity (how much knowledge or learning is required before users can
search effectively).

Objective measures are user independent, which makes evaluation sim-
ple using either theoretical methods like asymptotic complexity analysis
or empirical methods like wall-clock timing. However, the usefulness of
objective criteria is limited because search is user-centric and, relative to
existing search methods, users get little benefit1 from improved response
time or capacity. The performance of current search methods is already
more than adequate2: queries generally return results in less than 300 mil-
liseconds and users encounter no practical limits on the number of queries
they can execute. Therefore, from a user’s perspective, objective measures
alone are inadequate.

In contrast, subjective measures are user dependent, which makes eval-
uation more complicated. This thesis uses both objective measures and
subjective measures. The objective measures ensure search methods are
practical — it is possible and economically viable to achieve a response
time and capacity comparable to existing search engines. The subjective
measures evaluate the relative effectiveness of different search methods
from the user’s perspective. The remainder of this chapter explores the
application of subjective measures to web search evaluation.

1Search engines may benefit due to reduced costs.
2The on-going growth in processing power provides scope for computationally ex-

pensive relevancy improvements without impeding on response time or capacity.
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3.2 Methodologies

To evaluate subjective criteria, two methodologies have developed that
differ in how they incorporate the user factor: the interactive or user ori-
ented evaluation and the non-interactive or system oriented evaluation
[144]. Interactive methods capture input by monitoring the experience of
users exposed directly to the systems under evaluation; the users’ actions
can be supervised or unsupervised. Non-interactive methods capture in-
put by gathering judgments in a controlled manner where users are un-
aware of the system under evaluation.

Each methodology solicits different information, has different strengths
and weaknesses, and is therefore appropriate under different circumstances.
This section explores the interactive methodologies, supervised and unsu-
pervised, explores the non-interactive methodology, and then justifies the
use of the non-interactive methodology in this thesis.

3.2.1 Supervised Interactive

A supervised interactive study [192, 97] involves giving users artificial in-
formation needs and then monitoring how successful users are at solving
those information needs using the different search methods under evalua-
tion. Performance is determined by comparing either quantitative or qual-
itative effectiveness measures. Quantitative measures include task com-
pletion time [192] and number of queries performed per session [97] by
participants and qualitative measures include asking users for feedback
about the systems such as their perceived effectiveness [192].

User studies are time consuming, costly, not reproducible, and diffi-
cult to perform correctly because experimenters must control numerous
variables to ensure validity [80]. Another major drawback is that the user
experience variable requires control, which entails all search methods be-
ing near production quality and able to run in real-time [103].

Supervised interactive studies are ideal for evaluating search complex-
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ity: they have proven effective for comparing interfaces [192] and for de-
termining the behaviour of users [97]. However, as many users must re-
peat the same experiments, they are inefficient for evaluating subjective
criteria such as relevancy and quality.

3.2.2 Unsupervised Interactive

An unsupervised interactive study monitors users, who are unaware of
the study, solving real information needs [94, 93]. Performance is deter-
mined by aggregating, across all participants, effectiveness measures such
as task completion time and number of queries performed per session.

Like supervised user studies, unsupervised studies are time consum-
ing, costly, and not reproducible. However, the unfocused nature of unsu-
pervised studies amplifies these problems, as generally, analysis requires
much data, and that requires many users. Another potential issue is that
observations can have dual causes: task completion time may decrease be-
cause users solved their goals quicker or because users abandoned them
quicker. Therefore, other studies that determine the cause and expected
effect must precede unsupervised studies, so valid conclusions are drawn.

Unsupervised interactive user studies are ideal for determining the
scope of a search method — the extent to which a method affects per-
formance. Search methods can affect all queries, certain classes of queries,
or affect some classes positively and others negatively. For example, one
search method might improve all queries by 5%, another might improve
the worst performing queries by 35%, and another might improve those
same queries by 70%, but decrease the performance on all other queries by
5%. Scope defines the relative size of affected classes and the magnitude
of a search method’s effect on each class.

Scope is an excellent measure of the overall impact of a search method,
but unfortunately, unsupervised interactive studies require many users,
which restricts them to just the largest commercial search engines. The
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result is relatively few studies, which were limited to studying individ-
ual search engines through query logs, thereby limiting results to general
usage of current search engines [94, 93].

3.2.3 Non-Interactive

Non-interactive evaluations use a small number of queries and correspond-
ing sets of relevance judgments3 made by one or more expert users [11].
Performance is determined by comparing the relevance judgments with
the search results.

Unlike interactive evaluations, non-interactive evaluations operate in
a controlled environment that is completely independent of the search in-
terface. This makes non-interactive evaluations unsuitable for evaluating
search complexity and the effectiveness of different interfaces. However,
it allows non-interactive evaluations to evaluate relevancy and quality for
systems that are not yet production quality, currently lack an interface, or
which cannot run in real-time because of resource constraints.

Non-interactive evaluations are ideal for evaluating the relative result
relevancy and quality of many search methods and rank search meth-
ods consistently, even based on only one expert’s relevancy judgments
[83, 185]. Compared with supervised interactive studies, the same num-
ber of users can evaluate many more queries, dramatically improving ef-
ficiency and reducing the cost of performing evaluation.

3.2.4 Methodology Selection

Each methodology focuses on (or more correctly, is best at) evaluating a
specific feature of search. Table 3.1 summarizes the focus, and cost4 of each
methodology. The colour indicates their relative applicability to evaluat-

3Quality judgments may supplement the relevance judgments.
4Cost represents both the resource requirements and complexity of performing that

type of evaluation.
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Table 3.1: Features of evaluation methodologies and their relative applicability

to this thesis

Focus Cost
Non-Interactive Relevancy / Quality Low

Supervised Interactive User Behaviour Medium
Unsupervised Interactive Scope High

ing the search methods in this thesis: green, yellow, and red reflect high
through low applicability respectively.

Ideally, one would evaluate search methods using all three methodolo-
gies. However, this is often impractical (due to resource constraints) and
generally wasteful (due to duplication). For example, the search meth-
ods in this thesis use standard user interfaces that have already had their
complexity and learnability studied by the literature. Re-evaluating these
standard components using a supervised interactive user study would be
wasteful, because it involves implementing an otherwise unnecessary user
interface and ensuring it is of production quality.

For most search methods, including those in this thesis, evaluating
scope would be beneficial. However, as discussed in section 3.2.2, this
is impractical for most researchers, due to the enormous resource require-
ments. Consequently, like other researchers, this thesis is unable to eval-
uate scope, because it is infeasible to perform a large interactive unsuper-
vised user study. However, where appropriate this thesis makes conjec-
tures regarding scope based on large user studies of commercial search
engines.

When investigating new user interfaces or user behaviour, a super-
vised interactive study offers significant benefits over other methodolo-
gies. However, they are less efficient than non-interactive studies at mea-
suring relevancy and quality. Additionally, for some search methods, in-
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cluding some in this thesis, it is impractical to create the production quality
real-time experience necessary for a supervised interactive evaluation due
to excessive resource requirements.

This thesis focuses on search methods that improve relevancy and prin-
cipally use standard interfaces.5 This means there are no user interface or
user behaviour implications that require evaluation and no need to use
the supervised interactive methodology. To evaluate relevancy, this the-
sis uses a non-interactive methodology and the remainder of this chapter
explores the factors involved in performing non-interactive evaluation.

3.3 Corpus Selection

Evaluating a search method involves choosing the corpus on which to run
tests. The corpus is the set of documents searched in response to a query
and is the focus of this section.

Various corpora exist and each exhibits different characteristics such as
size (number of elements), type (web pages, text documents, images, etc.),
length (snippets, short articles, long articles, resolution, etc.), and other
characteristics such as the degree of linkage between pages. Selecting a
corpus that accurately represents the target domain is important because
search methods perform differently on different corpora. For example, an
effective algorithm for searching billions of web pages is probably ineffec-
tive at searching within a single text document and is certainly ineffective
at searching through millions of images.

For an accurate and representative evaluation, the corpus must be suf-
ficiently similar to the target domain. The search methods in this thesis
target large collections of web pages such as those indexed by commercial

5By improving relevancy, some search methods in this thesis might additionally re-
duce complexity for standard interfaces; this thesis identifies these cases using qualitative
analysis, but leaves further quantitative analysis for future work because that is outside
the scope of this thesis.
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search engines like Google and Yahoo and hence, their web page collec-
tions provide the most natural corpora to use for evaluation in this the-
sis. The remainder of this section explores the characteristics of available
document corpora and explains why the smaller corpora are unsuitable
substitutes for search engine corpora when evaluating the search methods
developed in this thesis.

3.3.1 Document Corpora

The available corpora can be broken down into roughly four categories:
classical corpora, news corpora, web corpora, and search engine corpora.
An important contributor and the source of many recent document cor-
pora is TREC, the Text REtrieval Conference [47]. Table 3.2 summarizes the
available collections including those used by TREC, collating data from
the collections themselves and several sources [11, 73, 99, 74, 81, 104, 184].

Table 3.3 summarizes the relative merits of each corpus category: green,
yellow, and red reflect high through low applicability respectively. Each
corpus category has problems and none is perfect for evaluating all search
algorithms, but each has its merits and is well suited to evaluating certain
kinds of search algorithm.

Classical corpora are useful for evaluating computationally expensive
algorithms including Latent Semantic Indexing or Singular Value Decom-
position based approaches[104] and those using richer natural language
analysis such as question-answering systems [182]. News corpora are use-
ful for classifier evaluation [108]. Web corpora are useful for evaluating
baseline search algorithms like BM25 [23, 159]. Search Engine Corpora
are useful for evaluating scale-dependent search improvements including
linkage analysis methods like PageRank [20] and frequency analysis meth-
ods like Google Distance [40].
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Table 3.2: Summary of Available Document Corpora

Number of Creation Avg Off-Site

Corpus Documents Date In-Degree

Classical Corpora

LISA 5,872

NPL 11,429

CACM 3,204 58–79

CISI 1,460

Cranfield 1,400 22–63

Time 523

Medline 1,033

ADI 82

News Corpora

OHSUMED 348,566

Reuters-21578 21,578 87

RCV1 810,000 96–97

RCV2 487,000 96–97

Aquaint 1,033,000 96–00

Web Corpora

GOV 1,247,753 2002 1.98

GOV2 25,205,179 2004

NTCIR-3 Web 11,038,720 2001

WT10g 1,692,096 1997 0.101

WT2g 247,491 1997 0.011

VLC 7,492,048 1997

VLC2 (WT100g) 18,571,671 1997

SPIRIT 94,552,870 2001 1.24

Blog06 3,215,171 2006

Search Engine Corpora

Google/Yahoo 20,000,000,000 4.916
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Table 3.3: Merits of different corpora and their relative applicability to this thesis

Search
Classical News Web Engine

Size Very Small Small Medium Large
Linkage Analysis No Links No Links Too Small Good

Frequency Analysis Too Small Too Small Too Small Good
Web Documents No No Yes Yes

Reusable Yes Yes Yes No
Modifiable Baseline Yes Yes Yes No

3.3.2 Search Engine Corpora

Search engine corpora are huge, tens of billions of pages, which, as this
section will explain, makes them ideal for linkage analysis and frequency
analysis. Still, search engine corpora have drawbacks. Researchers can-
not modify nor even inspect the baseline search method used, because the
search engine determines this parameter. This restriction makes search
engine corpora useless for evaluating some search methods. However, all
the search methods in this thesis build atop existing baseline methods and
are therefore, unaffected by this restriction. Additionally, search engine
corpora are neither stable nor static and as such, they are not reusable —
a definite drawback for any evaluation, but insufficient to preclude their
use when search methods use linkage analysis or frequency analysis.

Search methods that use linkage analysis and analyze the structure of
the web through hyperlinks require very large collections. Ideally, sam-
ples of the web such as GOV2 would be sufficiently large to enable linkage
analysis. However, TREC participants have routinely been unable to show
any benefit of PageRank or link analysis methods on the relatively small
TREC collections [73]. Even the largest web corpora, including SPIRIT
[99] with almost 100 million pages is still too small to provide an adequate
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representation of the web: the average off-site in-degree for the web is es-
timated to be four times larger than that in the SPIRIT collection [74]. Re-
searchers have constructed small subsets of these collections that exhibit
web like linkage characteristics and shown positive improvement from
linkage analysis [11], but the improvements have been small [81] and doc-
ument selection may be biased [74].

Search methods that use term frequencies perform significantly better
on larger collections, because the term frequencies become more stable
and more accurate. One problem with relatively small collections is that
they often cover relatively few terms: while Google covered 99.96% of
the nouns and noun phrases in WordNet, the TREC collections only cov-
ered 52.59% [98]. Even on the terms covered by the TREC collections, in
a relatively basic hypernym chain test, Google’s performance was about
1.5% better and the result was significant [98]. The performance difference
grows dramatically on harder problems such as those analyzing longer
phrases or co-occurrence of multiple terms. For the problem of question
answering, a problem requiring analysis of longer phrases, Dumais et al.
showed that Google (with 2 billion pages at the time) performed almost
300% better than the same algorithm on a TREC collection with three or-
ders of magnitude fewer pages (1 million) [60]. They also showed Google
performed 20% better at this task than MSN which was using Inktomi and
500 million pages at that time — evidence of the importance of collection
size to the accuracy of frequency analysis.

The search methods in this thesis make extensive use of frequency anal-
ysis, which only works well on huge collections. Therefore, like others
working on frequency analysis methods such as Google distance [40], this
thesis evaluates search methods using search engine corpora. Addition-
ally, this choice enables the baseline methods to benefit from linkage anal-
ysis, which increases the evaluation accuracy, as section 3.5 will explain.



70 CHAPTER 3. WEB SEARCH EVALUATION

3.4 Obtaining a Query Test Set

Having elected to use search engine corpora, the next challenge is ob-
taining the test set, a set of test queries and relevance judgments for the
documents retrieved in response to each query. Constructing a new test
set represents the largest cost in performing a non-interactive evaluation,
because it involves experts inspecting and judging the relevance of thou-
sands of documents per test query. Ideally, researchers avoid this huge
cost by reusing test sets constructed by other researchers. However, while
test sets exist for classical, news, and web corpora, no reusable test sets
exist for search engine corpora, because search engine corpora are con-
stantly changing. Therefore, choosing to use search engine corpora entails
creating a new test set from scratch.

Search engine corpora provide the most accurate and representative
evaluation of the search methods explored in this thesis. While an accu-
rate and representative evaluation is of utmost importance, other factors
such as cost, repeatability, and reusability deserve consideration. Of the
available corpora, only web corpora are remotely similar to search engine
corpora. While web corpora would provide a less accurate and less rep-
resentative evaluation, they potentially lower the cost of evaluation sig-
nificantly, because test sets already exist for web corpora. Therefore, web
corpora warrant further consideration.

Unfortunately, web corpora are not a panacea for the problem of con-
structing a test set and in fact offer no advantages over search engine cor-
pora. Firstly, it is possible to reuse the test queries from existing web cor-
pora test sets with both web corpora and search engine corpora. Secondly,
it is unsound to reuse the costly relevance judgments from web corpora
test sets and therefore, as with search engine corpora, new relevance judg-
ments are required when using web corpora. Finally, as section 3.5 will
explain, using web corpora precludes using the best available baseline
search method, which would taint the evaluation — lowering the eval-
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uation’s accuracy even further.

After explaining why it is beneficial to reuse TREC queries, this sec-
tion explores the number of queries needed to evaluate search methods.
Then it explains how to collect relevance judgments from experts effi-
ciently and without bias toward any specific search method. Finally, it
explains why the reuse of relevance judgments on large collections is un-
sound and hence, why web corpora offer no advantage over using search
engine corpora with respect to obtaining a useable test set.

3.4.1 Reusing TREC Queries

Reusing queries from existing test sets reduces the cost of producing new
test sets for different corpora. Additionally, objectivity can be increased
and bias avoided by using test queries chosen by third parties. The chal-
lenge is finding suitable test queries that are reflective of real queries that
search methods would encounter. Even more challenging is accurately
specifying the search goal such that experts could unambiguously judge
documents retrieved by a query as relevant or irrelevant to the given search
goal.

There are two main sources of predefined test sets: the classical corpora
and TREC, which through its various tracks has constructed many test
sets, principally for web corpora. The test sets for classical corpora con-
sist of long natural language queries, which are atypical of those posed to
modern search engines and are therefore unsuitable for web search eval-
uation. Conversely, the TREC test sets consist of short keyword queries
for a broad range of real world scenarios that cover all known search tasks
including navigational, transactional, and informational [21, 149] and are
therefore suitable for web search evaluation.

The clear test set definitions given by TREC, which consist of topic-
narrative pairs, make it easy to reuse queries on different corpora and in
new test sets, thereby reducing the cost of constructing new test sets. Each
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“topic” provides a few keywords that can be treated as a query; each “nar-
rative” gives specific details on what would be relevant and irrelevant doc-
uments, which can be treated as an unambiguous definition of the user’s
search goal and therefore as explicit guidelines for experts making rele-
vancy judgments.

The diverse range of test sets created by TREC makes finding suitable
test queries simple and objective. For example, it was simple to find hard
queries for current search engines from the TREC HARD track, which fea-
tures 50 queries determined to be difficult for current search engines.6 If
these third-party queries were unavailable, I would need to discover or
construct my own hard queries, which could lead to a non-objective evalu-
ation, because my assumptions about hard queries, which biased the con-
struction of my algorithms, might bias my selection of the hard queries
used for evaluation. Using a third-party source of test queries avoids this
source of bias and makes the evaluation more objective.

3.4.2 Number of Queries

Ideally, all evaluations would consider many queries. Unfortunately, avail-
able resources impose hard limits on the number of queries evaluated. For
typical non-interactive, relevance judgment based studies such as TREC,
where relevance assessors are employed, this limit has typically been 50
queries. From my experience and that of other researchers [6], judging the
relevance of 500 documents takes approximately 7 hours. On this basis,
comparing 20 search refinement methods, which on average produce 10
refinements, across 50 queries on the top 10 results, would involve some-
one judging the relevancy of 100,000 documents and that would take one
person about 40 weeks of very laborious full-time work.

Fortunately, a smaller sample size (number of queries) such as 15 queries
is acceptable. When the results are statistically significant with high con-

6based on previous TREC results
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fidence, there is a low probability of a Type I Error (false positive) and
therefore, provided the test shows a significant difference, the sample size
is irrelevant. The problem with using a small sample size is that the power
of the statistical test will be low, which means there will be a large prob-
ability of a Type II Error (false negative), namely, a significant difference
exists, but is not detected. This is not problematic here, since this the-
sis is interested in only large differences (>10%) between search methods,
which are much less susceptible to Type II Errors. It is acceptable for the
evaluation to have insufficient power to detect small differences, because
such differences would have negligible impact on users anyway.

3.4.3 Collecting Relevance Judgments

It is costly and time consuming to collect relevance judgments from ex-
perts, so the process should be efficient; however, accuracy is critical to
the integrity of the evaluation. To ensure accuracy, the collection process
must minimize bias and should lead to consistent and valid conclusions.

An important factor in choosing the collection process is the size of the
collection, because collection methods that work well on small collections
are often impractical for large collections. With small corpora, those con-
taining thousands of documents, it is feasible to build test sets that con-
tain complete relevance judgments. A test set contains complete relevance
judgments when experts have judged the relevancy of every document for
every query in the test set. Test sets with complete relevance judgments
are reusable because they can reliably rank any search method, including
new search methods. Unfortunately, it is impractical to collect complete
relevance judgments for large collections — for a collection containing mil-
lions or billions of documents that would mean judging the relevance of
millions or billions of documents for every test query.

To enable the practical evaluation of search methods on large collec-
tions, Sparck Jones and Van Rijsbergen [100] proposed “pooling”, which
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dramatically reduces the number of judgments required to compare search
methods on large collections. To evaluate one query using pooling, each
search method under evaluation runs the query, and then experts judge
the relevancy of the top-N documents retrieved by each search method
(the pool). Pooling is now widely used by researchers and within TREC.
However, as the next section will discuss, because pooling assumes that
un-judged documents are irrelevant, there are problems with reusing test
sets to evaluate new search methods — methods whose retrieved docu-
ments were not included in the pool.

Bias can compromise the accuracy of a test set. Sources of bias include
judgment order and search method awareness. The order in which experts
judge documents is important, because an expert’s opinion can change as
they view documents. For example, if an expert judges all the documents
retrieved by search method A before those retrieved by search method B,
and the judge becomes stricter with their interpretation of relevance as
they proceed, then the results will be biased towards search method A.
It is also important that experts are unaware of the search method that
retrieved the results they are judging, because experts may unconsciously
favour certain methods. This thesis avoids these sources of bias by using
the widely used approach [83] of merging the results retrieved from all
search methods and then presenting them in a blind random order to the
expert.

Another potential source of bias is the experts themselves, because dif-
ferent experts often make different judgments regarding the same docu-
ments. However, it turns out that even though these differences are com-
mon, it is sufficient to use just one expert’s judgments per query. Voorhees
[185] found that although three users only agreed on relevancy about 72%
of the time, regardless of which single user’s judgments were used, the
overall ranking of methods is the same. Furthermore, while it is safe and
typical to use a single expert per query, recent findings suggest that it may
not even be necessary to use the same judge for an entire query [6] —
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instead, the workload for a single query could be divided between mul-
tiple researchers, each judging the relevance of different documents. For
efficiency and as is now standard, the relevance of each document was
judged only once using a single expert; however, for safety, the same ex-
pert provided judgments for each entire query.

Relevance judgments may be binary or use a graded scale and both
approaches have been used in the literature [83]. To compare these ap-
proaches, I used both binary and graded judgments while performing a
subset of the web search evaluations in this thesis. The graded judgments
required significantly more work, but although there was an absolute dif-
ference between binary and graded judgments, there was no difference to
the ranking of methods, which agrees with the findings of more formal
studies on binary and graded judgments [6]. Therefore, this thesis uses
binary judgments.

3.4.4 Reusing Relevance Judgments

The most costly part of constructing a new test set is collecting the rele-
vance judgments from experts, because this can involve experts judging
the relevance of thousands of documents for each test query. Ideally, re-
searchers would reuse existing relevance judgments to eliminate this cost.
Unfortunately, no suitable relevance judgments exist for search engine cor-
pora because the web is constantly changing and even though relevance
judgments exist for web corpora, the reuse of the currently available judg-
ments to evaluate new search methods is not sound. The result is that
evaluations of new search methods on large corpora like web corpora and
search engine corpora require the expensive and time-consuming collec-
tion of new relevance judgments.

While pooling makes it practical to evaluate search methods on large
collections, it limits the reusability of those judgments on new search meth-
ods. The problem is that the performance of new search methods is un-
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derestimated when they retrieve un-judged documents7 that are relevant
[161]. This occurs because the evaluation method incorrectly assumes the
un-judged documents are irrelevant. Therefore, while it is valid to com-
pare methods included in the pool, it is invalid to compare methods out-
side the pool with either methods inside the pool8 or other methods out-
side the pool [26]. In general, this means that test sets constructed by pool-
ing are not reusable.

When test sets contain “sufficiently complete” relevance judgments, it
is safe to reuse them to evaluate new search methods [11, 26, 161]. A set of
relevance judgments is sufficiently complete if the pools are large enough
and diverse enough. The problem is determining whether pools are suffi-
ciently large and sufficiently diverse. The standard test for this is known
as the LOU test (leave out uniques) [26] and is based on comparing the
difference in performance of search methods after removing the relevant
documents that were uniquely contributed to the pool by that particular
search method. Justin Zobel [210] performed the first LOU tests and found
that the test sets for the small corpora of TREC-3, TREC-4, and TREC-
5 contained sufficiently complete relevance judgments and are therefore
reusable. Unfortunately, later studies have shown that the test sets for
larger collections are insufficiently complete and cannot be reused [26].

The problem with larger collections is that experts judge few docu-
ments relative to the size of the collections. This means that large collec-
tions will generally have a higher percentage of un-judged relevant doc-
uments than small collections. Chris Buckley et al. [26] found using the
LOU test that even the small Aquaint corpus has insufficiently complete
relevance judgments, because the pool sizes were too small relative to the
size of the collection. The problem is even worse on larger corpora like
GOV2 where in one case, the LOU test showed a decrease in performance

7Documents that were not retrieved by methods included in the pool.
8However, it is valid to conclude that methods outside the pool exceed the perfor-

mance of methods inside the pool.
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of 45.5% [26]. Tragically, the best performing search methods are poten-
tially the worst affected, because they find the greatest number of relevant
documents that other algorithms completely missed and as a result are
un-judged and assumed irrelevant.

The result is that even if this thesis used web corpora, new relevance
judgments would be required to evaluate fairly the new search methods
presented in the thesis. Therefore, there is no drawback, relative to web
corpora, to the use of search engine corpora.

3.5 Selecting a Baseline Search Engine

There are two varieties of search method: search engines and search ex-
tensions. Search engines directly access the underlying documents: they
index raw documents, then in response to queries they search those in-
dexes and retrieve results that match the query’s keywords. Search exten-
sions indirectly access documents through search engines: they sit atop
search engines and enhance functionality or performance by intercepting
and modifying the input to search engines or the output from them. For
example, automatic query expansion methods change the input by modi-
fying queries to improve the relevancy, while clustering methods change
the output by organizing the results to help users understand the different
interpretations of their query. This thesis focuses on search extensions.

While search extensions fall into a range of categories such as cluster-
ing, interactive query expansion, automatic query expansion, each inher-
ently requires an underlying search engine. To maximize the comparabil-
ity of different search extensions, each search extension should extend a
common baseline search engine. The common baseline serves two pur-
poses, firstly it ensures a level playing field across search extensions, and
secondly it provides an absolute baseline for comparison — search exten-
sions that do not significantly improve the baseline search engine’s per-
formance are clearly ineffective. Note that evaluations will also involve
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category specific baselines, for better comparison with prior research.

Two main categories of search engine are available for use as a baseline:
commercial search engines such as Google and research algorithms such
as those commonly used by TREC participants. Having already elected to
use search engine corpora, the choice of baseline is limited to commercial
search engines. However, as this section will show, using a commercial
search engine for evaluation is currently optimal because they outperform
the alternatives and would therefore be the preferred choice anyway.9 Ad-
ditionally, using commercial search engines is comparatively easy and cost
effective because it is difficult and time consuming to maximize the per-
formance of the best research algorithms.

3.5.1 State of the Art Baselines

Given a choice between baselines, the one with the best performance should
be preferred. Firstly, an improved result ranking is preferred to a search
extension that achieves the same effect, because search extensions usu-
ally involve additional user effort. Secondly, when evaluated on a poorly
performing baseline, search extensions that improve limitations that only
exist in the poor performing baseline may appear to outperform better
search extensions that improve performance of any baseline. For exam-
ple, two search extensions may improve a poorly performing baseline by
15% and 20%, while on a better baseline the same two extensions make
improvements of 15% and 2% respectively. Hence, it is important to use
the best performing baseline methods.

From its outset, Google has been a top ranking search engine [83]. Re-
cently, Yahoo and Microsoft have dramatically shrunk the gap, but Google
is still the top ranking search engine and outperforms Yahoo by about 4%
and Microsoft’s MSN/Live search engine by about 7% for informational

9This result reinforces my decision to use search engine corpora, because external par-
ties can only use commercial search engines with search engine corpora.
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queries [110, 111]. Therefore, with respect to commercial search engines,
Google is the best baseline.

There is a wide variety of research algorithms for implementing search
engines — the development of these algorithms is ongoing and TREC par-
ticipants regularly evaluate their performance. These algorithms group
together into classes known as search models or retrieval models. The
three main models are vector space [152] (most known for methods using
tf-idf), divergence from randomness [5] (most commonly implemented as
Okapi BM25 [147, 63]), and language models [13] and all have been widely
explored by TREC participants.

There is enormous variation in the particular implementations and al-
gorithms often incorporate numerous additional features to improve per-
formance such as PageRank [58] and Latent Semantic Analysis [54]. These
variations lead to very substantial differences in performance, making it
both hard to compare the performance of algorithm classes and difficult
to implement a well performing state-of-the-art search engine. The TREC
results of different algorithms on different data sets [48, 176] show that the
most popular algorithms, probably due to their simplicity, are algorithms
based on the vector space model and Okapi BM25, while the best per-
forming algorithms, with comparable levels of performance, were those
based on Okapi BM25 and language models . Therefore, with respect to
research algorithms, good implementations of Okapi BM25 or language
models provide the best baseline.

3.5.2 Comparing TREC and Commercial Search Engines

Several studies have compared the performance of state-of-the-art TREC
systems (Okapi BM25) against commercial search engines. In many of
these studies, search engines outperform TREC systems: search engines
improved on TREC systems by 50 – 60% on a homepage finding task [159]
and by 9% on a service location task [81]. In studies on queries that are
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atypical of web search and for which commercial search engines are un-
optimized such as long natural language queries [83], the optimized TREC
algorithms outperformed commercial search engines by 10%.

Implementing Okapi BM25 or an algorithm based on language models
requires implementing all the various tweaks and extensions that improve
performance over the basic methods and then tuning the parameters on
all these extensions to work well together. This in itself is a challenging
endeavour that is time consuming, difficult to get right [48], and beyond
the scope of this thesis. In contrast, Google’s researchers have already put
in years of work tuning their algorithms for the short keyword queries that
are typical of web search and the focus of the research in this thesis.

While TREC systems may outperform commercial search engines on
some queries, in their current form, the TREC systems fail to outperform
commercial search engines on typical web queries like those investigated
in this thesis. This performance difference, combined with the complexity
of implementing a competitive TREC system, justifies the use of Google as
the baseline search engine.

3.6 Performance Measure Selection

Researchers use many measures to evaluate web search performance. There
are two main categories of measurement: set based measures and sequence
based measures [106]. Set based measures work irrespective of order and
typically measure the entire result set and document set, while sequence
based measures consider the order of the result set.

This thesis primarily uses a sequence-based measure called Precision@N
or more specifically uses P@5 and P@10, which are the probabilities of
finding a relevant document within the first 5 and first 10 results respec-
tively. P@10 is the critical measure of success for an informational search
if the user is never willing to go beyond the first page of results, which for
the most part is true with web search.
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3.6.1 Set Based Performance Measures

The most common set based measures are Precision, which measures qual-
ity — the proportion of retrieved documents that are relevant; and Recall,
which measures retrieval effectiveness — the total number of relevant doc-
uments retrieved. Other set based measures include Fallout and Error Rate
[106].

Precision =
r

r + i

Recall =
r

nr

Fallout =
i

ni

Error Rate =
i+ nr − r
nr + ni

where r and i are the number of relevant and irrelevant documents re-
trieved and nr and ni are the total number of relevant and irrelevant doc-
uments.

Researchers rarely use set based measures for evaluating web search
for two reasons. Firstly, they inadequately reflect how users actually use
search engines. Users rarely look beyond the first few documents and
hardly ever past the 30th, as evidenced by the study of two large AltaVista
datasets [94] and my analysis of the AOL dataset [139]. Therefore, the
relevancy of the 100th document is practically meaningless, let alone the
1000th document, however, the relevancy of the documents ranked 100th
to 1000th have far more weight in set based measures than the documents
ranked 1st to 100th. Secondly, they require complete relevancy judgments
for the entire data set, which is impractical for all but the most trivial data
sets [82].

3.6.2 Sequence Based Performance Measures

Sequence based measures all depend on the number of relevant docu-
ments in the first part of a sequence of results. The most common sequence
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based measures are Precision@N (P@N ), Mean Average Precision (MAP ),
and Mean Reciprocal Rank (MRR1). Other sequence based measure in-
clude Success@N (S@N ), R-Precision, and Recall@N (R@N ) [81, 23, 1].

P@N =
rN
N

MAP =

∑nr
k=1 P@pk
nr

MRR1 =
1

p1

S@N =
|{q : q ∈ Q ∧ rN > 0}|

|Q|

R-Precision = P@pR

R@N =
rN
nr

where rN is the number of relevant documents in the firstN documents, nr
is the number of relevant documents, pn is the position of the nth relevant
document in the sequence, and Q is the set of queries.

Like set based measures, the computation of recall is impractical [82].
However, since recall primarily measures the performance of exhaustive
search [81] and this thesis focuses on informational search, there is little
value in measuring recall.

S@N and MRR1 are appropriate measures when there is just one rele-
vant document, as in navigation search. The remaining measures — P@N ,
MAP , and R-Precision — are appropriate for informational search and
transactional search [81].

Like recall, MAP and R-Precision quickly become impractical for large
corpora, because they can require relevance judgments for huge numbers
of results, when documents known to be relevant occur far down the or-
dering. Furthermore, as shown in table 3.4, the simple P@N measure pro-
duces comparable results to MAP with differences in order only occur-
ring between algorithms whose performance is not significantly different;
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MAP and R-Precision also produce comparable results as both approxi-
mate the area under a precision-recall curve and therefore their results are
correlated [9].

This thesis uses P@N for its simplicity and used N=5 and N=10 to re-
duce the number of judgments required. The choice of small N values
reflects that users rarely look beyond the first page of 10 results. Addition-
ally, P@a quite accurately predicts P@b where a < b, even for a = 1 [83],
therefore P@5 and P@10 are quite informative.
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Table 3.4: MAP and P@10 measures lead to comparable conclusions. The table

shows results for both measures from the TREC-2004 Web Track [48] for a

number of different algorithms. The results are sorted by MAP and the

bracketed numbers 1 through 18 show the ranking of each algorithm with

respect to MAP and P@10.

Algorithm MAP P@10
uogWebCAU150 0.179 (1) 0.249 (2)
MSRAmixed1 0.178 (2) 0.251 (1)
MSRC04C12 0.165 (3) 0.231 (3)
humW04rdpl 0.163 (4) 0.231 (4)
THUIRmix042 0.147 (5) 0.205 (6)
UAmsT04MWScb 0.146 (6) 0.209 (7)
ICT04CIIS1AT 0.141 (7) 0.208 (5)
SJTUINCMIX5 0.129 (8) 0.189 (11)
MU04web1 0.115 (9) 0.199 (9)
MeijiHILw3 0.115 (10) 0.153 (8)
csiroatnist 0.111 (11) 0.205 (12)
mpi04web01 0.106 (12) 0.177 (10)
VTOK5 0.101 (13) 0.135 (13)
fdwiedf0 0.090 (14) 0.117 (15)
wdf3oks0brr1 0.085 (15) 0.124 (14)
LamMcm1 0.049 (16) 0.087 (16)
irttil 0.018 (17) 0.029 (17)
XLDBTumba01 0.003 (18) 0.011 (18)



Chapter 4

Clustering Evaluation - QC4

Web Page Clustering methods find refinements in a different way from
other search extensions. Instead of directly seeking query refinements,
clustering methods organize the result set by grouping similar documents
together into clusters; each cluster represents a different refinement of the
search results and the set of refinements represent an overview or sum-
mary of the range of topics in the result set. This overview helps the user
explore the result set and understand the variety of retrieved pages.

The search evaluation method described in chapter 3 is effective at
comparing the refinement performance of different search extensions in-
cluding clustering methods. However, it does not measure exploratory ef-
fectiveness and is therefore inadequate for properly evaluating clustering
methods. A different evaluation method is required to compare clustering
methods properly.

Many web page clustering evaluation methods exist [166, 203, 75, 167,
177, 121, 37]. Unfortunately, they are not effective at comparing web page
clustering algorithms that produce structurally different clusterings, due
to an intrinsic bias towards certain types of clustering. Additionally, exist-
ing evaluation methods produce spurious results on many boundary and
extreme clusterings such as random clusterings.

This chapter discusses the desired characteristics of a method for web

85
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page clustering evaluation and then identifies the problems with the ex-
isting methods of clustering evaluation. Then it presents QC4, a new web
clustering evaluation method that addresses these problems by generaliz-
ing the “gold-standard” approach to use a new, richer structure for ideal
clusterings and by developing new measures of quality and coverage.

4.1 Properties of a Good Evaluation Method

There are substantial differences between the characteristics desired from
web page clustering and from clustering in other domains. In general,
good clusterings are compact (members of each cluster should be homo-
geneous and as close to each other as possible) and separate (the clusters
should be distinct and widely spaced) [75]. In contrast, good web clus-
terings are often loose (members of the same cluster can be very different
using standard measures of similarity) and overlapping (some documents
belong in multiple clusters). These differences make web page clustering
more difficult and evaluation more challenging.

Web clusterings are often loose as many terms are irrelevant to the doc-
ument’s semantic interpretation and only the document’s semantic inter-
pretation is relevant to cluster membership. In particular, under standard
distance measures, documents can be nearest neighbours by having many
similar terms but have completely different semantic interpretations, and
therefore belong in different clusters, due to subtle differences in relatively
few terms [166]. This precludes the use of standard distance measures for
web page clustering and evaluation.

Under the right measure of semantic distance, good web clusterings
would be compact (though still overlapping) and evaluation easy. How-
ever, finding the right measure of semantic distance is a hard open re-
search question and is the principal challenge of web page clustering.
Despite this, it is necessary to evaluate web page clusterings, which en-
tails having a reliable measure of semantic distance, and the most reliable
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source of that information is currently humans. Therefore, a good web
page clustering evaluation method requires human input.

After explaining the choice of a gold standard approach, this section
explains the desired properties of an ideal clustering, the need for two
measures (quality and coverage), and how aggregate results impact eval-
uation.

4.1.1 Methodology and Approach

There are two broad methodologies for evaluating clusterings. The inter-
nal methodology [75, 167] evaluates a clustering only in terms of a function
of the clusters themselves. The external methodology [75, 167] evaluates
a clustering using external information, such as an ideal clustering. When
external information is available, an external methodology is more appro-
priate because it allows the evaluation to reflect performance relative to
the desired output.

There are three main approaches to evaluation using the external method-
ology: gold-standard [177, 178], task-oriented [177], and user evaluation
[203, 64]. Gold-standard approaches compare a manually constructed ideal
clustering (ground truth or reference clustering) against the actual cluster-
ing. Task-oriented approaches evaluate how well some predefined task
is solved. User evaluation approaches involve directly studying the use-
fulness for users and often involve observation, log file analysis, and user
studies, such as those carried out in the user evaluation of Grouper [203].

Task-oriented methods, such as Search Result Reordering [203] and
the evaluation method described in chapter 3, evaluate clustering per-
formance relative to a single search goal and therefore do not evaluate
the exploratory effectiveness of a clustering. This limitation is typically
overcome by combining a task-oriented method with another evaluation
method such as a user study [203]. However, user studies are very diffi-
cult to reproduce and cannot be reused to evaluate new algorithms, be-
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cause they are dependent on the users. Additionally, the large cost and
time involved in conducting good user studies is a significant drawback.

Therefore, the evaluation method uses external information in the form
of an ideal clustering to define a gold-standard and measures a clustering
against this ideal clustering.

4.1.2 Structural Flexibility of the Ideal Clustering

Gold standard methods evaluate clustering performance by measuring
the similarity between a clustering and the gold standard, which is also
known as the reference clustering or “ideal clustering”. An ideal cluster-
ing is a set of clusters constructed by a human expert manually grouping
the documents from the result set into semantically meaningful clusters
that would be comprehensible to a user. To discriminate between the clus-
ters from the clustering and the clusters from the ideal clustering, the latter
are referred to as topics. Note that in the literature, topics are often called
classes [151, 129]; this thesis does not use this terminology because classes
are often disjoint [129], whereas topics may overlap.

To avoid bias, the structure of the ideal clustering should mimic the
desired result of clustering and it should not be artificially constrained by
the evaluation method or the capabilities of the evaluation measurements.
The ideal clustering’s structure must be quite flexible since clusterings can
be structurally diverse as shown in figure 4.1. The clustering granularity
may be coarse, so that there are just a few large clusters covering very
broad topics, or fine, so that there are many small clusters covering very
focused topics. The clusters may be disjoint and constitute a partition of
the results, or the clusters may overlap, so that the same page may appear
in several clusters. The clustering may be “flat” so that all clusters are at
the same level, or the clustering may be hierarchical so that lower-level
clusters are sub-clusters of higher-level clusters.

This is particularly relevant to web page clustering evaluation, because
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Figure 4.1: Different algorithms can produce structurally different clusterings

an individual text document may belong to many different topics and
therefore a complete set of topics for a collection of documents must nec-
essarily have overlapping topics. Requiring an ideal clustering to consist
of a partition forces it to leave out many reasonable topics, and causes it
to penalize an algorithm that happened to choose a different partitioning
of the documents. Therefore, the evaluation method and measurements
must account for the different structures, so there is no bias towards clus-
terings with certain characteristics.

4.1.3 Two Measures: Quality and Coverage

Quality and coverage are two complementary performance measures that
compare a clustering to an ideal clustering. Quality measures the fidelity
or accuracy of the information captured by the clusters in the clustering
(or equivalently, measures how accurately the information from the ideal
clustering is reproduced in the clustering). A high quality clustering is one
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in which each cluster contains documents relating to a single topic from
the ideal clustering. Coverage measures the completeness of the clustering
(or equivalently, measures how much of the information from the ideal
clustering is reproduced in the clustering). A high coverage clustering is
one in which for every distinct topic in the ideal clustering, there exists a
cluster that contains most of the documents from its respective topic.

Quality and coverage can measure performance at both a coarse level
(entire clustering) and at a finer level (individual clusters). To discriminate
between these, the quality of an individual cluster is referred to as “cluster
quality” and the quality of an entire clustering is referred to as “clustering
quality”. Similarly, the coverage of an individual topic is referred to as
“topic coverage” and the coverage of an entire ideal clustering is referred
to as “clustering coverage”.

There is often a trade off between quality and coverage — it is often
possible to tune parameters so algorithms perform one well, at the cost of
the other. Depending on their needs, users and applications weight the
importance of quality and coverage differently. For instance, mobile users
may want high quality, but accept low coverage because they do not want
to spend time filtering out irrelevant results and are unlikely to use ad-
ditional results because their time is limited; in contrast, researchers may
want high coverage, but accept low quality because they want exhaus-
tive information and are willing to spend time filtering out the irrelevant
results. Therefore, good evaluation methods must measure quality and
coverage separately. If a single measure of performance is desired, the
measurements can be combined later to give a single application specific
measurement.

4.1.4 Avoiding Bias from Aggregate Results

Clustering quality and clustering coverage implicitly (and often explic-
itly) aggregate the individual measures of cluster quality and topic cover-
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age. Depending on the implementation of this aggregation, this inevitably
leads to bias towards large clusters and large topics or towards small clus-
ters and small topics. A good evaluation method should avoid bias or
failing that, should make the bias and its magnitude explicit. For simplic-
ity, as identical principles and arguments apply to topics and coverage, the
remainder of this section will only address clusters and quality.

At one extreme are weighted measures, which weight each cluster’s
contribution according to its size. Weighted measures are justified because
they give each document equal importance. However, weighted measures
are biased towards the performance of large clusters because even large
changes in the quality of small clusters make only a negligible difference
in clustering quality.

At the other extreme are inverse weighted measures, which weight
each cluster’s contribution according to the inverse of its size. Inverse
weighted measures are inherently biased towards small clusters. How-
ever, large clusters should be at least as important as small clusters and
therefore inverse weighted measures are of no practical concern.

In between these extremes are the average measures, which weight
each cluster’s contribution equally. Average measures are justified be-
cause they give each cluster equal importance. However, average mea-
sures are biased towards the performance of small clusters when they
significantly outnumber the large clusters. For example, when there are
20 small clusters and 2 large clusters, the majority of the pages (those in
the large clusters) could be misclassified with only negligible impact on
clustering quality. Note: average measures are not biased towards small
clusters when the clustering is dominated by large clusters, e.g. 2 small
clusters and 10 large clusters.

Aggregating individual measures of cluster quality inherently causes
bias either towards large clusters (with weighted measures) or towards
small clusters (with average measures in some situations). To make these
biases explicit and to show the magnitude of the bias, a good evaluation
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method should present both weighted measures and average measures of
clustering quality. When both measures agree, all clusters have compara-
bly good or bad performance. When the measures disagree, the magni-
tude of the difference between the performance of the small and the large
clusters is reflected by the difference between the measures. When a single
overall measure is required, the two measures can be combined together.

4.2 Properties of Good Measures of Quality and

Coverage

Numerous measures of quality and coverage are conceivable, but only
those meeting certain requirements are good measures of quality and cov-
erage. This section describes the properties that good measures of qual-
ity and coverage should satisfy when comparing clusterings against ideal
clusterings.

4.2.1 Must Measure Quality and Coverage

An obvious requirement is that the measures actually measure quality or
coverage. For the quality measure, performance improves when the ac-
curacy of the information captured by the clusters increases. Accuracy
increases when the ratio of relevant to irrelevant pages increases because
the user is less likely to encounter irrelevant pages within a cluster. For
the coverage measure, performance improves when the quantity of infor-
mation captured by the clusters increases. Information quantity increases
when previously unrepresented pages are added because the user is less
likely to run out of relevant pages.

Figure 4.2 depicts these basic properties. As in all the figures in this sec-
tion, the circular objects represent clusters; the different colours represent
the different topics of the pages in the cluster, and the bracketed numbers
inside clusters represent the number of pages of a particular topic.
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Quality

Coverage

Coverage

Figure 4.2: The basic properties of quality (first row) and coverage (second and

third row) are that quality increases when the ratio of relevant to irrelevant pages

increases and coverage increases when the number of distinct pages increases.

4.2.2 Perfect Clusterings

Another obvious requirement is that only perfect clusterings (those that
exactly match the ideal clustering1) have perfect quality (100%) and per-
fect coverage (100%). Quality is less than 100% when any cluster contains
irrelevant pages. Coverage is less than 100% when any document is absent
from any cluster or when any topic is absent from the clustering. Figure
4.3 shows the properties of a perfect clustering and how its coverage and
quality can become imperfect.

1Coverage is more complicated when the ideal clustering is hierarchical and there are
additional situations where coverage is 100%; these situations are discussed later in this
section.
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Quality

Ideal Clustering

Coverage

(1000)(1000)

(1000)(1000)

(1000)(1000)

(1000)

Quality
Coverage

100%
100%

Figure 4.3: Quality and coverage are only 100% when the clustering is an exact

match of the ideal clustering.

4.2.3 Worthless Clusterings

Some clusterings are worthless and should have 0% quality and 0% cov-
erage. There are three types of clustering that are worthless: the singleton
clustering, the giant cluster clustering, and the random clustering. All
three are shown in figure 4.4. A singleton clustering is a bijection between
pages and clusters (every document is in exactly one cluster and every
cluster contains exactly one document). The giant cluster clustering has
every page in one large cluster. The random clustering is where every
cluster was formed by randomly selecting pages.

The singleton, giant, and random clusterings are intrinsically worthless
because no ‘clustering’ was performed to obtain any of them. Clustering
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Quality
Coverage

~0%
~0%

Quality
Coverage

~0%
~0%

Quality
Coverage

~0%
~0%

Figure 4.4: Three extreme/boundary cases where the clustering adds no value

over the result set and both quality and coverage should be 0%.

involves grouping items according to some inter-item relationships, but
these extreme clusterings reflect no relationship between the documents.
From the user’s point of view, a web clustering is only useful to the extent
that it helps them find relevant documents. These three types of clustering
are no more useful to the user than the original result set and therefore
are completely worthless, which justifies them having 0% quality and 0%
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coverage.2 Random Clusterings are discussed further in section 4.2.8.

4.2.4 Cluster Composition

The composition of a cluster is determined by the distribution of its docu-
ments across topics. When clusters contain documents from different top-
ics their quality and coverage should be adversely affected. Clusters are
generally identified3 by their most populous topic and only users seeking
that topic are likely to examine the cluster and its documents. To those
users, only the documents belonging to the cluster’s most populous topic
are relevant and hence from the perspective of evaluation, the most popu-
lous topic’s documents are termed relevant and the remainder irrelevant.

Quality already considers cluster composition because it uses the ratio
of relevant to irrelevant pages, which reduces quality when a cluster con-
tains irrelevant pages (documents from different topics). However, this is
not sufficient, because it is easier for users to distinguish the relevant doc-
uments from the irrelevant documents when the irrelevant documents are
dispersed over fewer irrelevant topics. It is easier because users can use
similarities between a new irrelevant document and prior documents as a
shortcut to determine relevance more quickly than they could evaluate the
relevance of a document that was unrelated to the prior documents. Ad-
ditionally, as the number of categories of irrelevant document grows, the
shortcut becomes less useful as users must remember and process more in-
formation to determine relevance. Therefore, as depicted in figure 4.5, the
quality measure must consider the composition of the irrelevant pages and
quality should be lower when the irrelevant pages are distributed across
more topics.

The addition of new documents to a cluster increases the coverage of

2In practice, quality and coverage can only be near 0% for these extreme clusterings
as some ideal clusters might only contain a single document and there are difficulties in
identifying random clusters.

3labelled with a title or description
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Quality

Figure 4.5: The composition of the irrelevant pages in a cluster affects quality.

Coverage

Coverage

Coverage

Coverage

Figure 4.6: The composition of a cluster affects coverage.

those document’s topics. However, pages are only useful if the right users
can find them and therefore the coverage gained from a relevant page
should be higher than the coverage gained from an irrelevant page. More
generally, a page’s contribution to coverage should be proportional to the
relative size of the page’s topic in the cluster. The effect of this, as de-
picted in figure 4.6, is that adding relevant documents increases coverage
because both the number and proportion of relevant documents are in-
creasing. While adding irrelevant documents does increase the coverage
of the topics of those documents, it significantly lowers the coverage of the
relevant documents’ topic because it reduces the proportion of documents
for that topic.
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4.2.5 Segmented Clusters

Users expect different clusters to contain distinctly different documents.
When a single topic is segmented into two or more clusters, effort is re-
quired to find all related clusters and to combine their results and this
affects both quality and coverage.

Quality is affected because segmented clusters reproduce their ideal
cluster less accurately — it is left up to the user to work out that the seg-
ments reflect the same topic. This disadvantage can be reflected in the
quality measure by lowering the quality of clusters that are small relative
to their topic. This has the effect of reducing quality when a cluster is split
into two comparably composed clusters, as depicted in figure 4.7.

Quality

Figure 4.7: Splitting a cluster into two parts reduces quality.

Coverage is affected by segmented clusters too, because users may
overlook some relevant clusters (possibly as they have already found an-
other relevant cluster) and therefore miss the relevant documents in those
clusters (documents they might have found if the clusters were not seg-
mented). Furthermore, if the clusters are segmented too much, the work
involved in identifying relevant clusters may be comparable to the work
involved in identifying relevant pages from the original result set and if
the clusters are particularly small, not much value will be gained by find-
ing them and therefore they should not be considered covered.

The effect of segmentation on coverage depends on the number of
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Coverage

Coverage
Coverage

(1000)

(1000)

(1000)

4 x (25)
41 x (20)
9 x (20)
45 x (4)  
205 x (4)  

Figure 4.8: When there are many more clusters than topics, all but the largest

clusters have relatively lower coverage because users must expend more effort

to find the same quantity of information.

clusters and their comparable size as depicted in figure 4.8. The blue
clusters are large and are relatively unaffected because they are easy to
find due to their size. The green clusters are smaller, but still larger than
the purple clusters, which makes them easier to identify and more valu-
able once identified. The purple clusters are numerous and small, which
makes them comparatively harder to find because they are indistinguish-
able from other small clusters, and once found, only marginally more valu-
able than individual documents from the original result set.
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4.2.6 Overlapping Clusters

Topics overlap when multiple topics contain the same document, which
happens when documents (those in the overlap) relate to multiple topics.
Since the documents in the overlap are relevant to users interested in any
one of the topics, the clusters identified with these topics should also over-
lap. If the documents were in just a subset of the corresponding clusters,
users interested in a topic whose corresponding cluster did not contain the
documents would miss out on some relevant documents, meaning cover-
age should be lower, as shown in figure 4.9.

Ideal Clustering

Coverage

(800)(800) (200)

Quality
Coverage

100%
100%

Figure 4.9: To have complete coverage documents must be in all relevant

clusters, which means documents must appear in multiple clusters when topics

overlap.

When the topics partition the documents, some properties hold that
are not true in the more general setting where topics may overlap. Good
measures of quality and coverage should avoid these properties so they
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work correctly when topics and clusters overlap.

For example, when the topics partition the documents, clusters con-
sisting of disparate topics never have 100% quality, but when topics over-
lap, clusters with 100% quality must necessarily contain documents from
multiple topics. A more useful property that applies to both partitions
and overlapping topics is that clusters never have 100% quality when they
contain any pair of documents that do not share a common topic.

Similarly, when the topics partition the documents, a clustering can
have 100% coverage when each document is in just one cluster, but when
topics overlap, documents in the overlap must be in more than one cluster.
In general, coverage measures must consider the coverage of individual
topics to account for documents in multiple topics.

4.2.7 Hierarchical Clusterings

Hierarchical clusterings introduce a second kind of overlap: overlap be-
tween clusters at different levels of the hierarchy. The overlap between
clusters of hierarchical clusterings must be treated differently from over-
lapping clusters because they have different semantics. With overlapping
clusters, the overlap represents distinct information that belongs in multi-
ple clusters. With hierarchical clusterings, the overlap represents the same
information at different levels of detail or granularity. The examples of hi-
erarchical clusterings in this section all relate to the ideal clustering shown
in figure 4.10, which contains a 2-level hierarchy of topics.

A single cluster can only reflect one level of granularity because a clus-
ter cannot be both broad and specific at the same time. To account for this,
each cluster should be evaluated against just one level of the topic hier-
archy4 in isolation. The most appropriate level is the one containing the
topic that is most similar to the cluster, as shown in figure 4.11.

Evaluating a cluster against the most appropriate level can mean it has

4Different clusters might be evaluated against different levels of the hierarchy.



102 CHAPTER 4. CLUSTERING EVALUATION - QC4

Ideal Clustering
2 Topics 6 Sub-Topics

(700) (700)

(700)

(100)

(100)

(100)(100)
(2500)

(700) (700)

(700)

(100)

(100)

(100)(100)
(2500)

Figure 4.10: An ideal clustering with eight topics arranged in a hierarchy where

the red and yellow topics each have three (overlapping) sub-topics.

lower quality than if it were evaluated against another (less appropriate)
level. Figure 4.11 shows an example of this situation; had the cluster been
compared to the red top-level cluster, it would have had perfect quality.

Beyond narrowing the focus to just a single level of the hierarchy, the
quality measure is otherwise unaffected by a hierarchical clustering. In
contrast to quality, coverage is significantly affected by hierarchical clus-
terings. Normally, perfect coverage requires every topic to be covered by
a cluster. However, in a hierarchical clustering, topics at different levels
represent the same information, so it is only necessary to cover each topic
in one level of granularity to capture its information.5

Figures 4.12 and 4.13 illustrate four clusterings with perfect quality and
perfect coverage. They have perfect quality because every cluster exactly

5There is no harm in covering the same topic at multiple levels of granularity, but once
a topic has been covered, its coverage cannot be improved further by covering it again at
a different level of granularity.



4.2. PROPERTIES OF GOOD MEASURES OF QUALITY AND COVERAGE103

(700) (700)

(700)

(100)

(100)

(100)(100)
(2500)

Low Quality

Figure 4.11: Clusters must be evaluated against the most comparable level of the

hierarchy. Note that all the cluster’s documents are in the red topic, but because

it is more similar to the green and blue topics, it must be compared against

those, and consequently, it has lower quality.

matches a topic in the ideal clustering. They have perfect coverage because
every top-level topic is covered either by a cluster that covers the top-level
topic directly or by clusters that cover all the sub-topics of that top-level
topic.

4.2.8 Random Clusterings

It is plausible that a measurement could penalize a singleton or giant clus-
tering because they are readily identified and can be singled out. In con-
trast, it is not as obvious that a measurement could distinguish a random
clustering from any other clustering, because any clustering could have
been randomly generated.

A random clustering is one in which the clusters have been constructed
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Quality
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Quality
Coverage

100%
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(2500)
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(100)
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Figure 4.12: Three clusterings with perfect quality and perfect coverage.

Quality
Coverage
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(700)

(100)

(100)

(100)(100)
(2500)

(700) (700)
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(100)

(100)

(100)(100)

Figure 4.13: Another clustering with perfect quality and perfect coverage —

covering documents at multiple levels is not a problem.

randomly. When a cluster is constructed randomly, every document has
an equal probability of being included. When the documents are labelled
(such as with topics), one can calculate the expected composition of a ran-
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dom cluster. The expected composition of a random cluster can then be
used as a guide to determine whether a cluster is random.

When a cluster, c, is constructed randomly, the probability of a docu-
ment being in c is |Dc||D| , where Dc is the set of documents in cluster c and
D is the set of documents. When the documents are partitioned6 by a set
of labels, B, the probability of a document having label b is |Db||D| , where Db

is the set of documents with label b. Using these probabilities, a randomly
generated cluster of size |Dc| is expected to have |Db||D| × |Dc| documents
with label b and as it turns out, most randomly generated clusters have a
very similar composition to the expected composition.

To test this hypothesis, I ran some simulations that randomly generated
many clusters. In each simulation, 10,000,000 clusters were generated with
a fixed number of documents drawn at random from a pool of labelled
documents. Figures 4.14, 4.15, and 4.16 show the results of some of these
simulations.

Each figure shows a 2d-transformation of cluster-space that focuses on
the region containing random clusters. Each point represents a set of struc-
turally identical clusters and the height (and colour) shows the frequency7

at which different clusters occurred. Specifically, the x-axis represents the
number of documents labelled 1 in the generated cluster and the y-axis
represents the spread of documents with labels 2, 3, 4, and 5. (The spread
is (max{|D2|, |D3|, |D4|, |D5|} −min{|D2|, |D3|, |D4|, |D5|}), where |Di| rep-
resents the number of documents labelled i.)

In the simulation shown in figure 4.14, one expects there to be 1000
1100
×

190 = 172.7 documents labelled 1 and 25
1100
× 190 = 4.3 documents each of

labels 2, 3, 4, and 5. As shown in figure 4.14, the most common composi-
tion of a random cluster contained 173 documents labelled 1 and either 4

6The labels must partition the documents to ensure that
∑

b∈B{
|Db|
|D| } = 1.

7The frequency was normalized to account for the fact that 4 dimensions are being
compressed into the y-axis and it was interpolated at some points on y = 0 and y = 1
where no clusterings exist.
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|D1|

Spread
of {|D2| ... |D5|}

Normalized
Frequency

Figure 4.14: The distribution of random clusters containing 190 documents,

selected from a pool with 1000 documents labelled 1 and 25 each of labels 2 to 5.

|D1|

Spread
of {|D2| ... |D5|}

Normalized
Frequency

Figure 4.15: The distribution of random clusters containing 50 documents,

selected from a pool with 100 documents labelled 1 and 25 each of labels 2 to 5.

or 5 documents each of labels 2, 3, 4, and 5 (giving a spread of 1) — exactly
what was calculated as being the expected composition. The results match
for the other examples too. Note that figure 4.16 has a hole at (2,1) because
it is not possible to have a clustering with this configuration.

As seen in all three simulations, most random clusters are very similar
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|D1|
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of {|D2| ... |D5|}
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Figure 4.16: The distribution of random clusters containing 10 documents,

selected from a pool with 25 documents labelled 1 and 25 each of labels 2 to 5.

to the expected composition and occupy a small part of the space (except
when the clusters are small). Therefore, it is plausible that a measurement
could penalize random clusters because they can be identified and dis-
tinguished from good clusters. Note that a non-random cluster that has
a similar composition to the expected random cluster would be equally
useless because it gives no more information than the original result set;
penalizing it as a random cluster would not be a problem.

4.2.9 Limited User Time

In contrast to the properties discussed so far that apply in general to most
domains8, the impact of limited user time is domain specific. Limited user

8While unnecessary, the properties of overlapping clusters and hierarchical cluster-
ings have no effect in domains without these kinds of clusters.
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time only applies to applications like web page clustering, which have a
user (typically human) that is unlikely to consume all the available infor-
mation.

In the web page clustering domain, users have limited time to exam-
ine the cluster contents. Users are far less likely to look beyond the 1000th
document than they are to look past the 10th document (section 2.2). More
generally, as the absolute cluster size increases, the probability of a user
viewing any particular page in the cluster decreases. The quality of a clus-
ter should reflect the diminishing returns of increasing cluster size and
therefore there should be relatively more value in increasing the size of
small clusters than in increasing the size of large clusters, as depicted in
figure 4.17.

Quality

Quality
(50)

(10)
(5)

(100)

Figure 4.17: Increasing any cluster’s size increases its quality (as described in

section 4.2.5), but there is greater benefit in increasing the size of smaller clusters

because users have limited time.

4.3 Existing Measurements

There are many ways of measuring quality and coverage against an ideal
clustering. Some measurements evaluate individual clusters, while others
evaluate entire clusterings, and some measurements evaluate just quality
or just coverage, while others provide a combined measure of quality and
coverage. This section introduces the most commonly used measurements
for evaluating web page clusterings.
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The rest of this chapter uses the following notation:
C is a set of clusters
T is a set of topics (the clusters of the ideal clustering)
D is a set of pages
c, t, and d are individual elements of C, T , and D respectively
Dc is the pages in cluster c
Dt is the pages in topic t
Dc,t is the pages in both cluster c and topic t
Cd is the set of clusters containing page d
Ct = {ci| argmaxtj(|Dci,tj |) = t} is the set of clusters that best match topic t

4.3.1 Quality Measurements

The Precision [174, 145, 187], P (c, t), of a cluster relative to a topic is the
fraction of the pages in the cluster that are also in the topic.

P (c, t) = Precision =
|Dc,t|
|Dc|

The Purity [169, 167], P (c), of a cluster is the Precision of the cluster
relative to its best matching topic (the topic that the cluster most closely
resembles).

P (c) = Purity = max
t∈T
{P (c, t)}

The Entropy9 [208, 166, 189], E(c), of a cluster is based on information
theory [113] and it is the average “narrowness” of the distribution of the
pages of the cluster over the topics. More precisely, it is the amount of in-
formation required to refine a cluster into the separate topics it represents.

E(c) = Entropy = −
∑
t∈T

P (c, t) log|T | P (c, t)

9It is typical to use a base |T | logarithm in the context of clustering evaluation to nor-
malize E(c) to [0, 1].
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4.3.2 Coverage Measurements

The Recall [174, 145, 187], R(c, t), of a cluster relative to a topic is the frac-
tion of the pages in the topic that are also in the cluster.

R(c, t) = Recall =
|Dc,t|
|Dt|

Just as Purity extends Precision to evaluate a cluster without reference
to a specific topic, Recall can be extended to evaluate a topic without ref-
erence to a cluster.

The Best Recall, R1(t), of a topic is the Recall of the topic relative to its
best matching cluster. Recall can also be extended in a different way: the
Total Recall, R

∑
(t), of a topic is the total coverage of the topic among all

clusters that best match that topic.

R1(t) = Best Recall = max
c∈C
{R(c, t)}

R
∑

(t) = Total Recall =
|
⋃
c∈Ct Dc,t|
|Dt|

4.3.3 Combined Measurements

In contrast to the previous measurements, which measure either quality
or coverage, the measurements in this section combine the evaluation of
quality and coverage into a single measurement, which is not as good, be-
cause it limits the usability of these measurements as discussed in section
4.1.3.

The F-measure [166, 211, 165], F (c, t), of a cluster combines Precision
and Recall. Typically, Precision and Recall are given equal weight, al-
though it is possible to weight them unevenly.

F (c, t) = F-measure =
2 · P (c, t) ·R(c, t)

P (c, t) +R(c, t)

As with Precision and Recall, the F-measure can be extended to avoid
referencing a specific cluster or specific topic, by computing the F-measure
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of the cluster relative to its best matching topic (F (c)) or to its best match-
ing cluster (F (t)).

F (c) = Cluster F-measure = max
t∈T
{F (c, t)}

F (t) = Topic F-measure = max
c∈C
{F (c, t)}

Mutual Information [169, 167, 167], MI , is based on information theory
[113] and it is an average of a measure of correspondence between each
possible cluster–topic pair.

MI =
2

|D|
∑
c∈C

∑
t∈T

|Dc,t| log|C||T |(
|Dc,t||D|
|Dc||Dt|

)

4.3.4 Overall Measurements

While Mutual Information provides a combined measure of overall clus-
tering quality and clustering coverage, the other measures (Purity, En-
tropy, Recall, and F-measure) provide measures of individual cluster qual-
ity and topic coverage. To transform these measurements into overall mea-
sures of clustering quality and clustering coverage that work without ref-
erence to a specific cluster or topic, they need to be averaged over all the
clusters or topics; this can be done in a weighted or un-weighted manner
[166] and this thesis uses the terms Weighted and Average to distinguish
the two methods. Note that in the literature, sometimes the weighted av-
erage is termed micro-averaging and the un-weighted average is termed
macro-averaging [27, 129].

Average Precision (average purity over clusters), Weighted Precision
(cluster size weighted average purity over clusters), Average Entropy (av-
erage over clusters), and Weighted Entropy (cluster size weighted average
over clusters) measure overall clustering quality.

AP = Average Precision =

∑
c∈C P (c)

|C|
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WP = Weighted Precision =

∑
c∈C P (c)|Dc|∑

c∈C |Dc|

AE = Average Entropy =

∑
c∈C E(c)

|C|

WE = Weighted Entropy =

∑
c∈C E(c)|Dc|∑

c∈C |Dc|

Average Recall (average over topics) and Weighted Recall (topic size
weighted average over topics) [44] measure overall clustering coverage.

AR1 = Average Best Recall =

∑
t∈T R

1(t)

|T |

WR1 = Weighted Best Recall =

∑
t∈T R

1(t)|Dt|∑
t∈T |Dt|

AR
∑

= Average Total Recall =

∑
t∈T R

∑
(t)

|T |

WR
∑

= Weighted Total Recall =

∑
t∈T R

∑
(t)|Dt|∑

t∈T |Dt|

Average F-measure (average F-measure over clusters) and Weighted F-
measure (cluster size weighted average over clusters) provide combined
measures of overall clustering quality and clustering coverage. As F-measure
combines quality and coverage, it can be averaged over either clusters
(AFC and WFC) or topics (AF T and WF T ).

AFC = Average Cluster F-measure =

∑
c∈C F (c)

|C|

WFC = Weighted Cluster F-measure =

∑
c∈C F (c)|Dc|∑

c∈C |Dc|

AF T = Average Topic F-measure =

∑
t∈T F (t)

|T |

WF T = Weighted Topic F-measure =

∑
t∈T F (t)|Dt|∑

t∈T |Dt|
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Note that in contrast to the other measurements, a lower Entropy value
is better than a higher value and the best possible Entropy value is 0. As
a reminder of this inversion, AE and WE will be written as AE♦ and WE♦

respectively.

4.3.5 Pair Counting Measurements

Pair counting measurements [121] are a third type of measurement that
differ from the information theoretic (e.g. Entropy and Mutual Informa-
tion) and set matching measurements (e.g. Precision, Recall, and F-measure)
discussed so far. Pair counting measurements count the number of docu-
ment pairs on which two clusterings agree or disagree.

Pair counting measurements compute counts of the number of docu-
ment pairs:

N11 pairs in both the same cluster and the same topic

N00 pairs in both different clusters and different topics

N10 pairs in the same cluster, but different topics

N01 pairs in different clusters, but the same topic

They then combine these counts to produce a measurement. Specific pair
counting measurements include the Rand Index [142], the Fowlkes-Mallows
Index [65], the Jacard Index [126], and the Mirkin Metric [127].

Rand =
N11 +N00

|D|(|D| − 1)/2

Fowlkes-Mallows =
N11√

(N11 +N10)(N11 +N01)

Jacard =
N11

N11 +N10 +N01

Mirkin = 2(N10 +N01)
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Since pair counting measurements assume the clusters and topics are
partitions of the documents, they are not suitable for evaluating over-
lapping and hierarchical clusterings. Even worse, as Meila [121] points
out, these measurements have wildly variable baseline performance and
it is not clear whether linearity exists after normalization, which makes it
somewhat dubious to compare clusterings using pair counting measure-
ments.

In practice, pair counting measurements are rarely used to evaluate
web page clustering algorithms. Due to the significant drawbacks of using
pair counting measurements to evaluate clusterings, they are not consid-
ered further in this thesis.

4.3.6 Other Measurements

This section has introduced the evaluation measurements most commonly
used to evaluate and compare web page clusterings. There are a multitude
of possible adaptations of these measurements as well as other measure-
ments such as L, H, and D [121]. However, these adaptations and alter-
native measurements are very similar to the measurements already intro-
duced.

My experiments with adaptations on Precision, Recall, and F-measure
found no notable difference from the more common variations already dis-
cussed. L, H, and D are set matching measurements (match each cluster to
an individual topic) and suffer from the matching problem [121], which oc-
curs when a measurement ignores the unmatched part (the irrelevant doc-
uments) of a cluster or ignores some unmatched clusters or topics entirely.
The set matching problem also affects Precision, Recall, and F-measure
(other set matching measurements) and is observed in failures of the basic
quality, basic coverage, composition, segmentation, and perfect clustering
tests in section 4.4. These similarities make it redundant to discuss these
adaptations and alternative measurements and they are not considered
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further in this thesis.

4.4 Synthetic Evaluation of Existing Measurements

To test the measurements described in section 4.3, I constructed a suite of
synthetic clusterings that test the characteristics of good evaluation mea-
surements as described in section 4.2. This section describes the results
of these experiments and provides examples of cases where the existing
measurements fail.

4.4.1 Measures Quality and Coverage

Most of the existing measurements meet the most basic requirement and
measure quality and/or coverage, but Best Recall and F-measure fall short.
Figure 4.18 shows an ideal clustering (which will be used throughout this
section), figure 4.19 shows five clusterings of the documents from the ideal
clustering, and table 4.1 shows the results for each of the measurements.

(1000) (25) (25)(25)(25)

Figure 4.18: An ideal clustering with five topics: four small topics of equal size

and one large topic.

Clustering 4.19.E has perfect quality since every cluster exactly matches
a topic, while the other four clusterings have imperfect quality because
each contains imperfect clusters. Precision and Entropy meet the basic re-
quirement of measuring quality (to measure how accurately a cluster rep-
resents a topic) and correctly rate 4.19.E as perfect and 4.19.D as imperfect.
However, Precision and Entropy do not account for segmented clusters
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(5)(10)
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(5)(5)

Figure 4.19: Five clusterings of the documents in figure 4.18. A provides a

baseline. B and C have greater coverage than A. D has greater coverage than B

and C, but lower quality. E has perfect quality and the best coverage.

(as section 4.4.6 will show), and consequently, they both incorrectly rate
4.19.A, 4.19.B, and 4.19.C as perfect.

All five clusterings have poor coverage since they leave out the vast
majority of the documents and two or more of the topics (including the
largest topic). The coverage measures rate them lower, but Best Recall fails
to measure the increased coverage of clustering 4.19.B relative to 4.19.A be-
cause it only considers the best cluster for each topic and therefore ignores
the coverage provided by the smaller cluster.

The combined measures are more difficult to interpret because they
combine quality and coverage and each measure implicitly weights qual-
ity and coverage differently. Cluster F-measure tends towards quality,
Topic F-measure tends towards coverage, and Mutual Information tends
towards coverage. This bias explains why it is valid for Mutual Informa-
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Table 4.1: Synthetic test case results for the five clusterings in figure 4.19

Quality AP WP AE♦ WE♦

4.19.A 1 1 0 0
4.19.B 1 1 0 0
4.19.C 1 1 0 0
4.19.D 0.833 0.8 0.144 0.172
4.19.E 1 1 0 0
Coverage AR1 WR1 AR

∑
WR

∑
4.19.A 0.08 0.009 0.08 0.009
4.19.B 0.08 0.009 0.12 0.014
4.19.C 0.12 0.014 0.12 0.014
4.19.D 0.12 0.014 0.2 0.023
4.19.E 0.2 0.023 0.2 0.023
Combined AFC WFC AF T WF T MI

4.19.A 0.571 0.571 0.114 0.013 0.043
4.19.B 0.452 0.492 0.114 0.013 0.045
4.19.C 0.452 0.492 0.181 0.021 0.045
4.19.D 0.397 0.41 0.181 0.021 0.059
4.19.E 1 1 0.2 0.023 0.107

tion to be higher for clusterings 4.19.B and 4.19.C and higher again for
4.19.D, while it is also valid for Cluster F-measure to be lower for 4.19.B
and 4.19.C and lower again for 4.19.D — the coverage of 4.19.B and 4.19.C
are higher than 4.19.A and 4.19.D is higher again, while the quality of
4.19.B and 4.19.C are lower (due to segmentation10) than 4.19.A and 4.19.D
is lower again.

Like Best Recall, Topic F-measure ignores the coverage provided by
the smaller cluster in 4.19.B and therefore fails to measure the increased

10described in section 4.2.5
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coverage. Additionally, Topic F-measure ignores the low quality cluster
in 4.19.D and therefore fails to measure the decreased quality. Cluster F-
measure also fails to measure coverage, because it considers 4.19.E to be
perfect, yet the clustering fails to cover most topics.

4.4.2 Size Bias

When results are aggregated there is an inevitable bias towards either
small or large clusters and towards either small or large topics (as dis-
cussed in section 4.1.4). When examining just a single measure, this bias
can lead us to believe one of two falsehoods:

• that two clusterings are comparably good, when in fact they have
radically different utility

• that two clusterings are radically different in performance, when in
fact they are very comparable

This conundrum can only be resolved by examining at least two measures,
one biased towards small clusters or topics and one biased towards large
clusters or topics.

Precision, Recall, F-measure, and Entropy can all be aggregated in a
weighted or un-weighted manner and consequently the issues of cluster
and topic size bias can be resolved by looking at both the average and
weighted measures. In contrast, Mutual Information is just a single mea-
sure and therefore does not permit the distinction between small or large
clusters and small or large topics.

Figure 4.20 shows three reasonable clusterings of high quality, but vary-
ing coverage and table 4.2 shows the results for each measurement.

Although the clusterings are very accurate and therefore have high
quality, they do not have perfect quality due to segmentation. However,
Precision and Entropy incorrectly rate all the clusterings as perfect, be-
cause they do not account for segmentation (as section 4.4.6 will show).
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The utility of a clustering depends on the user’s needs (depth vs breadth).
Average Recall suggests that clusterings 4.20.B and 4.20.C are equally good,
while Weighted Recall suggests that 4.20.B and 4.20.C are radically dif-
ferent in performance; the opposite is true when considering 4.20.A and
4.20.B. Interpreting the result for a given user correctly requires both Av-
erage Recall and Weighted Recall. Mutual Information permits no distinc-
tion between clusterings 4.20.B and 4.20.C and therefore the result cannot
be interpreted with respect to the user’s needs.

(920)

(900) (5) (5)(5)(5)

(107) (10) (10)(10)(10)

A)

C)

B)

Figure 4.20: Three reasonable clusterings of the documents in figure 4.18. A

misses the smaller topics and some documents from the large topic. B covers

some of the small topics and misses more documents from the large topic. C

covers more of the small topics and misses many documents from the large

topic.

Other clusterings (where the quality of small and large clusters dif-
fers) show similar results for the average and weighted pairs of Precision
and Entropy. The results for F-measure mirror those of Recall for cluster-
ings 4.20.B and 4.20.C and the results for Topic F-measure mirror those
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Table 4.2: Synthetic test case results for the three reasonable clusterings in figure

4.20

Quality AP WP AE♦ WE♦

4.20.A 1 1 0 0
4.20.B 1 1 0 0
4.20.C 1 1 0 0
Coverage AR1 WR1 AR

∑
WR

∑
4.20.A 0.184 0.836 0.184 0.836
4.20.B 0.34 0.836 0.34 0.836
4.20.C 0.341 0.134 0.341 0.134
Combined AFC WFC AF T WF T MI

4.20.A 0.958 0.958 0.192 0.871 0.099
4.20.B 0.456 0.934 0.456 0.892 0.091
4.20.C 0.496 0.296 0.496 0.228 0.091

of Recall for 4.20.A and 4.20.B.11 The Cluster F-measure results for 4.20.A
may be surprising because they are quite different from those for Topic
F-measure and Recall. The results differ because Cluster F-measure takes
the average over clusters (of which there is just one in 4.20.A), whereas
Topic F-measure and Recall take the average over topics (of which there
are five in the ideal clustering).

4.4.3 Perfect Clusterings

Only perfect clusterings should get the best possible value as explained in
section 4.2.2. Excluding the cases where Precision and Entropy gave per-
fect quality to segmented clusters, most of the existing measurements give

11except for a small discrepancy that occurs due to the differences between F-measure
and Recall — though with small changes to the clusterings, this discrepancy could be
eliminated
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the best possible values to perfect clusters and lower values to less than
perfect clusters. As shown in figure 4.21, there are three exceptions among
the existing measurements: Mutual Information, Cluster F-measure, and
Topic F-measure.

(1000) (25) (25)(25)(25) MI = 0.268

(1000) (25)

(25)

(25)(25)(25)
MI = 0.333

AFC = 1
WFC = 1

AFT = 1
WFT = 1

(25)(15)

(15)

Figure 4.21: A case where Mutual Information gives a lower value to the perfect

clustering than it gives to an inferior clustering and where F-measure gives

perfect values to imperfect clusterings.

Mutual Information can give a better value to an imperfect clustering
than it gives to a perfect clustering. This problem stems from the fact that
Mutual Information assumes the clusters partition the pages — none of
the other measurements considered have this restriction. This problem
with Mutual Information is compounded by another limitation of Mutual
Information: its maximum value is variable and is dependent on the ideal
clustering. This is in contrast to Precision, Recall, and F-measure that have
a best possible value of 1 and Entropy that has a best possible value of 0.

Cluster F-measure and Topic F-measure can give the maximum value
(1) to clusterings with imperfect coverage and imperfect quality respec-
tively. This problem occurs because Cluster F-measure and Topic F-measure
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do not necessarily consider all the topics and clusters respectively, which
is necessary when evaluating coverage and quality respectively. The prob-
lem occurs for Cluster F-measure when all the clusters are perfect, but the
clustering as a whole is imperfect by not covering all the topics from the
ideal clustering. Similarly, the problem occurs for Topic F-measure when
the clustering is a superset of the ideal clustering, but the clustering as a
whole is imperfect by containing imperfect clusters, which makes it harder
for the user to find the good clusters.

4.4.4 Worthless Clusterings

As discussed in section 4.2.3, there are three main types of worthless clus-
tering: singleton, giant, and random. Table 4.3 shows the evaluation re-
sults of the three worthless clusterings shown in figure 4.22 and the two
reasonable clusterings shown in figure 4.23 — all are being compared against
the ideal clustering shown in figure 4.18.

The singleton clustering consists of one cluster for each and every doc-
ument in the ideal clustering. The giant clustering consists of a single clus-
ter containing every document in the ideal clustering. The random cluster-
ing consists of 5 clusters, each containing 190 documents (170 documents
from the large cluster and 5 documents from each of the four small clus-
ters) — this cluster represents one that is likely to result from a random
clustering algorithm as discussed in section 4.2.8. Ideally, the measure-
ments should give a maximally bad value to these three clusterings (that
is, 1 for AE♦ and WE♦ and 0 for all the others) and they should certainly
give a worse value to these clusterings than to the reasonable clusterings
shown in figure 4.23.

Clustering 4.23.A has higher coverage than 4.23.B because it enables
the user to find relatively more documents from the small topics with min-
imal effort — documents that would have been particularly hard to find
in the original result set. Clustering 4.23.B obviously has higher quality,
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(1000)
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(25)

(25)
(25)
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Singleton
Clustering
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Clustering

Figure 4.22: Three worthless clusterings that have maximally bad quality and

coverage.

because all its clusters are pure (none contain any irrelevant documents).
Both clustering 4.23.A and 4.23.B should have higher quality and cover-
age than the worthless clusterings: although the worthless clusterings let
users find documents from the large topic easily, so too did the original
result set, and therefore the worthless clusterings offer no improvement
over the original result set.

Average and weighted Precision, Total Recall, and Entropy perform
particularly badly with all three types of worthless clustering and in the
case of the singleton clustering are notably bad — they consider the worth-
less singleton clustering to be perfect!

Mutual Information does better and has no problems identifying the
giant and random clusterings as worthless. However, although not as se-
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A)

B)

Figure 4.23: Two reasonable clusterings — A has higher coverage and B has

higher quality.

vere, it too considers the singleton clustering to be better than other clus-
terings that are far from worthless. In particular, Mutual Information con-
siders the singleton clustering to be better than the reasonable clustering
4.23.B and better than all three of the reasonable clusterings shown in fig-
ure 4.20 and evaluated in table 4.2.

Despite being a combination of Precision and Recall, F-measure sur-
prisingly does the complete opposite of those measurements on the sin-
gleton clustering and correctly identifies it as worthless. Best Recall also
identifies the singleton clustering as worthless. However, F-measure and
Best Recall perform badly on giant and random clusterings with Best Re-
call considering the worthless giant clustering to be perfect.

Precision, Total Recall, and Entropy suffer on the singleton clustering
because they are biased towards small clusters — the Singleton Clustering
represents the extreme case of segmentation and these measurements fail
to account for segmentation (as section 4.4.6 will discuss).

Precision, Recall, F-measure, and Entropy suffer on the giant and ran-
dom clusterings because these measures are dependent on the ideal clus-
tering. Specifically, they are related to the proportion of pages in the largest
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Table 4.3: Synthetic test case results for Singleton Clustering, Giant Clustering,

and Random Clustering

Quality AP WP AE♦ WE♦

Singleton 1 1 0 0
Giant 0.909 0.909 0.268 0.268
Random 0.895 0.895 0.3 0.3
4.23.A 0.654 0.686 0.474 0.451
4.23.B 1 1 0 0
Coverage AR1 WR1 AR

∑
WR

∑
Singleton 0.032 0.005 1 1
Giant 1 1 0.2 0.909
Random 0.194 0.173 0.17 0.773
4.23.A 0.45 0.095 0.258 0.109
4.23.B 0.154 0.062 0.162 0.098
Combined AFC WFC AF T WF T MI

Singleton 0.009 0.009 0.062 0.009 0.1
Giant 0.952 0.952 0.226 0.87 0
Random 0.286 0.286 0.094 0.264 0.001
4.23.A 0.435 0.38 0.393 0.128 0.123
4.23.B 0.232 0.124 0.263 0.114 0.041

topic, which can lead to very high performance for worthless clusterings
that offer no improvement over the original result set. While this exam-
ple exemplifies the problem as it has one topic that is substantially larger
than the others, the problems with giant and random clusterings exist on
balanced clusterings too, although they are less severe.
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4.4.5 Cluster Composition

The composition of a cluster affects both quality and coverage, as dis-
cussed in section 4.2.4. In particular, quality should be lower when the
irrelevant documents in a cluster are dispersed over more topics, whereas
coverage should be lower when there are many irrelevant documents in a
cluster. Note that adding an irrelevant document might (and often should)
increase the coverage of that document’s respective topic, but it will de-
crease the coverage of the cluster’s topic (the topic of the relevant docu-
ments in the cluster).

(25) (25) (25)(25)(25)

Figure 4.24: An ideal clustering with five topics of equal size.

A)

C)

B)

(25)

(25)

(25)
(12)

(6)
(6)

(3)

Figure 4.25: Three clusterings of the documents in figure 4.24. A contains a

cluster where 32% of the documents are irrelevant. B contains a cluster with the

same fraction of irrelevant documents, but dispersed over more topics. C

contains a cluster where only 11% are irrelevant.
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Table 4.4: Synthetic test case results for the three clusterings in figure 4.25

Quality AP WP AE♦ WE♦

4.25.A 0.676 0.676 0.391 0.391
4.25.B 0.676 0.676 0.531 0.531
4.25.C 0.893 0.893 0.212 0.212
Coverage AR1 WR1 AR

∑
WR

∑
4.25.A 0.296 0.296 0.2 0.2
4.25.B 0.296 0.296 0.2 0.2
4.25.C 0.224 0.224 0.2 0.2
Combined AFC WFC AF T WF T MI

4.25.A 0.806 0.806 0.239 0.239 0.36
4.25.B 0.806 0.806 0.239 0.239 0.278
4.25.C 0.943 0.943 0.211 0.211 0.353

Table 4.4 shows the evaluation results of the three clusterings shown
in figure 4.25 compared against the ideal clustering shown in figure 4.24,
which has five topics of equal size. Clustering 4.25.B has lower quality
than 4.25.A, even though both have the same number of irrelevant doc-
uments, because the cluster in 4.25.B disperses the irrelevant documents
over more topics. Clustering 4.25.C has higher coverage than 4.25.A, be-
cause there are fewer irrelevant documents in the cluster.

As quality measures, Precision and F-measure fail to consider cluster
composition and do not penalize clustering 4.25.B, while Entropy and Mu-
tual Information correctly penalize clustering 4.25.B.

As coverage measures, Recall, Topic F-measure, and Mutual Informa-
tion fail to consider the irrelevant documents and do not increase cover-
age in clustering 4.25.C. Cluster F-measure correctly increases for cluster-
ing 4.25.C (although this is merely the result of Cluster F-measure being a
combined measure and correctly capturing the increase in quality).

Surprisingly, Best Recall, Topic F-measure, and Mutual Information ac-
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tually decrease for clustering 4.25.C, even though both quality and cover-
age have improved relative to 4.25.A. This occurs because these measure-
ments have over emphasized the mere inclusion of documents and while
sound from an information theoretic viewpoint for Mutual Information, it
is undesirable when measuring quality and coverage.

4.4.6 Segmented Clusters

Quality and coverage are reduced when a topic is segmented (or split) into
multiple smaller clusters, as discussed in section 4.2.5.

Table 4.5 shows the evaluation results of the two clusterings shown
in figure 4.26. Clustering 4.26.B has lower quality than 4.26.A because its
clusters reproduce their topic less accurately. F-measure and Mutual Infor-
mation correctly give lower scores to 4.26.B, while Precision and Entropy
incorrectly give the same score to both clusterings.

(900)

(450) (450)

A)

B)

Figure 4.26: Two clusterings of the documents in figure 4.18. A contains a cluster

with 900 documents and B contains the same documents split between two

clusters.

Table 4.6 shows a set of six clusterings based on the ideal clustering
shown on the left hand side of figure 4.8. The clusterings have varying
degrees of segmentation for either full coverage or 33% coverage. Table
4.7 shows the evaluation results of the six clusterings. The ideal clustering
(4.8 LHS) should have a perfect score, while the clustering with a single
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Table 4.5: Synthetic test case results for the two clusterings in figure 4.26

Quality AP WP AE♦ WE♦

4.26.A 1 1 0 0
4.26.B 1 1 0 0
Combined AFC WFC AF T WF T MI

4.26.A 0.947 0.947 0.189 0.861 0.097
4.26.B 0.621 0.621 0.124 0.564 0.068

perfect cluster (4.8 LHS Blue) should have a lower score. 4.8 RHS should
have the 2nd highest score because it covers more documents than 4.8 LHS
Blue and it covers the blue topic using relatively few clusters. The three
clusterings that split a single topic’s documents into multiple clusters (4.8
RHS Blue, 4.8 RHS Green, and 4.8 RHS Purple) should have progressively
lower scores.

Total Recall completely ignores segmentation: it gives a perfect score to
both the ideal clustering (4.8 LHS) and the segmented clustering (4.8 RHS),
and gives identical scores to 4.8 LHS Blue and the three progressively more
segmented clusterings (4.8 RHS Blue, 4.8 RHS Green, and 4.8 RHS Purple).

Best Recall and Topic F-measure also ignore segmentation, although
this is less obvious because they assign lower scores to the segmented
clusterings. The lower scores occur because the best clusters in these clus-
terings are worse, not because the clusters are segmented. This is evident
by examining the results for the two most segmented clusterings (4.8 RHS
Green and 4.8 RHS Purple), Best Recall and Topic F-measure give equal
scores to these clusterings because the best clusters in both are the same.

Cluster F-measure and Mutual Information correctly give progressively
lower scores to 4.8 RHS Blue, 4.8 RHS Green, and 4.8 RHS Purple. It
might seem strange that Cluster F-measure and Mutual Information give
4.8 RHS a lower score than 4.8 LHS Blue, since 4.8 RHS has higher cov-
erage. However, 4.8 RHS has much lower quality than 4.8 LHS Blue due
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Table 4.6: Six clusterings based on figure 4.8 with an ideal clustering consisting

of 3 topics, each with 1000 documents. The numbers indicate the number of

clusters of a given number of documents, for instance, 41x 20 means 41 clusters

with 20 documents. The columns indicate the respective topic of the clusters.

The cluster names relate the clusterings to figure 4.8, where LHS and RHS

correspond to the clusters on the left and right side respectively and the colours

reference the subset of clusters included in a clustering. For example, RHS Green

is a clustering containing just the green clusters from the right hand side, while

LHS is a clustering containing all the clusters on the left hand side.

Blue Green Purple
4.8 LHS 1x 1000 1x 1000 1x 1000
4.8 RHS 1x 700 41x 20 9x 20

1x 200 45x 4 205x 4
4x 25

4.8 LHS Blue 1x 1000
4.8 RHS Blue 1x 700

1x 200
4x 25

4.8 RHS Green 41x 20
45x 4

4.8 RHS Purple 9x 20
205x 4

to segmentation, and Cluster F-measure and Mutual Information measure
both coverage and quality.

Cluster F-measure incorrectly gives the imperfect clustering 4.8 LHS
Blue a perfect score, this is another example of Cluster F-measure’s failure
with perfect clusterings that was explained earlier in section 4.4.3.



4.4. SYNTHETIC EVALUATION OF EXISTING MEASUREMENTS 131

Table 4.7: Synthetic test case results for the six clusterings in table 4.6

Coverage AR1 WR1 AR
∑

WR
∑

4.8 LHS 1 1 1 1
4.8 RHS 0.247 0.247 1 1
4.8 LHS Blue 0.333 0.333 0.333 0.333
4.8 RHS Blue 0.233 0.233 0.333 0.333
4.8 RHS Green 0.007 0.007 0.333 0.333
4.8 RHS Purple 0.007 0.007 0.333 0.333
Combined AFC WFC AF T WF T MI

4.8 LHS 1 1 1 1 1
4.8 RHS 0.017 0.232 0.301 0.301 0.322
4.8 LHS Blue 1 1 0.333 0.333 0.667
4.8 RHS Blue 0.225 0.648 0.275 0.275 0.253
4.8 RHS Green 0.023 0.034 0.013 0.013 0.132
4.8 RHS Purple 0.009 0.014 0.013 0.013 0.113

4.4.7 Overlapping Clusters

The measurements should continue to measure quality and coverage cor-
rectly when the clusters or topics overlap, as discussed in section 4.2.6.

(80)(80) (20)

Figure 4.27: An ideal clustering with two overlapping topics, each topic contains

100 documents with 20 that overlap.

Figure 4.27 shows an ideal clustering with two overlapping clusters
and figure 4.28 shows three possible clusterings of the same data. Table
4.8 shows the evaluation results of the three clusterings. Clustering 4.28.B
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A)

B)

C)

Figure 4.28: Three clusterings of the documents in figure 4.27. A is the perfect

clustering and exactly matches the ideal clustering, B has less coverage with no

clusters overlapping, and C has even less coverage with no clusters containing

any documents belonging to multiple topics.

has lower coverage than 4.28.A because the green cluster does not cover
the documents that overlap. Clustering 4.28.C has even lower coverage
because neither cluster covers the documents that overlap. None of the
clusterings contain any irrelevant documents and so all three have high
quality, although due to segmentation, clusterings 4.28.B and 4.28.C have
slightly lower quality.

Recall and F-measure correctly reflect the reduced coverage of cluster-
ings 4.28.B and 4.28.C. Precision does not reflect the reduced quality since
Precision does not identify segmented clusters.

Entropy and Mutual Information fail to handle overlapping topics and
actually give inverted scores claiming that 4.28.B is better than 4.28.A and
that 4.28.C is better again. This occurs because both Entropy and Mutual
Information overcount the documents from the overlapping topics and
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Table 4.8: Synthetic test case results for the three clusterings in figure 4.28

Quality AP WP AE♦ WE♦

4.28.A 1 1 0.464 0.464
4.28.B 1 1 0.232 0.258
4.28.C 1 1 0 0
Coverage AR1 WR1 AR

∑
WR

∑
4.28.A 1 1 1 1
4.28.B 0.9 0.9 0.9 0.9
4.28.C 0.8 0.8 0.8 0.8
Combined AFC WFC AF T WF T MI

4.28.A 1 1 1 1 0.615
4.28.B 0.944 0.951 0.944 0.944 0.684
4.28.C 0.889 0.889 0.889 0.889 0.754

treat them as both relevant and irrelevant in the same cluster. As identified
in section 4.4.3, Mutual Information can also fail when the clusters overlap,
but the topics do not.

4.4.8 Hierarchical Clusterings

The measurements should also continue to measure quality and coverage
correctly when the topics form a hierarchy, as discussed in section 4.2.7.

Table 4.9 shows the evaluation results of six clusterings of the docu-
ments from the hierarchical ideal clustering shown in figure 4.29. Cluster-
ing 4.30.A has poor coverage because many topics are missing and it has
poor quality because it contains an impure cluster. 4.30.B has perfect qual-
ity, but has imperfect coverage because it is missing the purple and aqua
topics and it has not covered those documents using clusters at another
level of the hierarchy. Clusterings 4.31.A, 4.31.B, 4.31.C, and 4.31.D are all
perfect because every cluster exactly matches a cluster from the ideal clus-
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2 Topics 6 Sub-Topics

(400)

(100)

(200)

(700)

(150)

(90)

(60)

(300)

Figure 4.29: An ideal clustering with two top-level topics, each with three

sub-topics.

A)

B) (400) (60) (150)(200)

(150)

(50)

Figure 4.30: Two clusterings of the documents in figure 4.29. A has poor

coverage and consists of an impure cluster that mixes 2nd-level topics. B has

greater coverage than A, but still not perfect and all the clusters in B have perfect

quality.
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A)

B)

C)

D)

(700)

(700)

(700)

(150)(90)

(60)

(300)

(200)

(400)

(100)
(60)

(150)(90)

(200)

(400)

(100)

(60)

(150)(90)

Figure 4.31: Four different perfect clusterings of the documents in figure 4.29. A

exactly matches the top-level of the ideal clustering, B exactly matches the

2nd-level, C matches some top-level topics and some 2nd-level topics, and D

matches all 2nd-level topics and additionally matches one of the top-level topics.
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Table 4.9: Synthetic test case results for the six clusterings shown in figures 4.31

and 4.30

Quality AP WP AE♦ WE♦

4.30.A 1 1 0.27 0.27
4.30.B 1 1 0 0
4.31.A 1 1 0.477 0.47
4.31.B 1 1 0 0
4.31.C 1 1 0.115 0.322
4.31.D 1 1 0.066 0.189
Coverage AR1 WR1 AR

∑
WR

∑
4.30.A 0.114 0.2 0.083 0.175
4.30.B 0.634 0.68 0.695 0.81
4.31.A 1 1 0.5 0.775
4.31.B 0.884 0.775 1 1
4.31.C 0.938 0.925 0.75 0.85
4.31.D 0.938 0.925 1 1
Combined AFC WFC AF T WF T MI

4.30.A 0.5 0.5 0.149 0.281 0.17
4.30.B 1 1 0.674 0.76 0.928
4.31.A 1 1 0.61 0.783 0.881
4.31.B 1 1 0.924 0.855 1.136
4.31.C 1 1 0.761 0.802 0.883
4.31.D 1 1 0.958 0.95 1.341

tering and either every top-level topic is covered or all the corresponding
sub-topics are covered.

Note that if the cluster in 4.30.A were compared against the red cluster
it would be considered pure. However, since the cluster is most similar to
the 2nd-level topics, it should be compared to the topics at that level (as
discussed in section 4.2.7) and consequently it has poor quality.
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Entropy, Recall, Topic F-measure, and Mutual Information all fail to
give perfect scores to all the perfect clusterings. Furthermore, in some
instances they give better scores to imperfect clusterings than to perfect
clusterings, as happens with the imperfect clustering 4.30.B relative to per-
fect clustering 4.31.A. Best Recall works correctly with top-level clusters
(4.31.A) and Total Recall works correctly with low-level clusters (4.31.B
and 4.31.D).

Precision incorrectly measures the quality of hierarchical clusterings
because it gives perfect quality to the imperfect clustering 4.30.A. Clus-
ter F-measure incorrectly gives perfect coverage to 4.30.C, but this error
is unrelated to the hierarchical nature of the clustering because Cluster F-
measure incorrectly measures coverage on similar non-hierarchical clus-
terings too (section 4.4.1).

4.4.9 Limited User Time

In domains where the users of clusters have limited time, there is more
relative value in increasing the size of small clusters than in increasing the
size of larger clusters, as discussed in section 4.2.9.

Table 4.10 shows the evaluation results of the four clusterings shown
in figure 4.32. The improvement of 4.32.B over 4.32.A should be relatively
greater than the improvement of 4.32.D over 4.32.C because a user with
limited time is less likely to examine the extra documents in 4.32.D than
those in 4.32.B.

Precision and Entropy cannot account for user time because they do
not have the segmentation property and therefore ignore the size of clus-
ters. Recall and Mutual Information could account for user time, but do
not and the relative improvement of 4.32.D over 4.32.C (double from dou-
ble the documents) is the same as the relative improvement of 4.32.B over
4.32.A.
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Figure 4.32: Four clusterings of the documents in figure 4.18. The clusterings

progressively cover more documents, but all from the same topic.

F-measure correctly accounts for user time because the harmonic mean12

is sensitive to smaller values. For example, with AFC , the relative im-
provement of 4.32.D over 4.32.C is 1.77, while the relative improvement of
4.32.B over 4.32.A is 1.97 — there is relatively more value in doubling the
size of the small cluster than doubling the size of the large cluster.

12F-measure is the harmonic mean of precision and recall.
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Table 4.10: Synthetic test case results for the four clusterings in figure 4.32

Quality AP WP AE♦ WE♦

4.32.A 1 1 0 0
4.32.B 1 1 0 0
4.32.C 1 1 0 0
4.32.D 1 1 0 0
Coverage AR1 WR1 AR

∑
WR

∑
4.32.A 0.004 0.018 0.004 0.018
4.32.B 0.008 0.036 0.008 0.036
4.32.C 0.03 0.136 0.03 0.136
4.32.D 0.06 0.273 0.06 0.273
Combined AFC WFC AF T WF T MI

4.32.A 0.039 0.039 0.008 0.036 0.002
4.32.B 0.077 0.077 0.015 0.07 0.004
4.32.C 0.261 0.261 0.052 0.237 0.016
4.32.D 0.462 0.462 0.092 0.42 0.032
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4.4.10 Summary

None of the existing measures meets all the requirements of a good mea-
sure of quality or coverage. In fact, as shown in table 4.11, all but one
measure fails more than half the requirements; Cluster F-measure is the
exception, but it still fails 6 of the 16 requirements.

Table 4.11: A summary of what properties each evaluation measurement

satisfies. Green indicates the measurement has the property, red indicates it does

not, and white indicates the property is not applicable to the measurement.

P E R1 R
∑

FC F T MI

Separate Measures
Basic Quality
Basic Coverage
Size Bias
Perfect Clusterings
Worthless - Singleton
Worthless - Giant
Worthless - Random
Composition - Quality
Composition - Coverage
Segmentation - Quality
Segmentation - Coverage
Overlapping Clusters
Overlapping Topics
Hierarchical Topics
Limited User Time
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4.5 Approaches used in practice

In practice, researchers have used a wide assortment of evaluation meth-
ods and as noted by Ferragina et al. [64], there is little consensus on
what should be used. With no evaluation method suitable for comparing
all types of web page clustering, researchers must often choose between
somewhat dubious methods that are suited to their algorithm’s special
characteristics and other methods that are unsuitable for their algorithm.
More commonly, they must include both and explain the discrepancy be-
tween the results.

4.5.1 Suffix Tree Clustering

Zamir [203] faced this tradeoff in evaluating Suffix Tree Clustering (STC)
[201] and Grouper [202]. Grouper introduced a distinct user interface that
required user studies to evaluate, while STC generates overlapping clus-
ters, which makes the common-place merge-then-cluster approach unsuit-
able because it creates ideal clusterings that are partitions. Instead, Zamir
chose to fall back on a task-oriented method called Search Result Reorder-
ing, where the most relevant clusters for a particular search goal are used
to reorder the search results. The reordered search results are then evalu-
ated using standard search engine evaluation methods such as those dis-
cussed in chapter 3.

The Search Result Reordering method is not without its limitations,
as Zamir notes in conclusion “The IR approaches impose an unrealistic
user model and then apply (controversial) metrics developed for a dif-
ferent task.”. More specifically, Zamir notes that the one-cluster model
of Search Result Reordering is biased against small clusters and so they
use the multi-cluster model. However, akin to the discussion of average
and weighted measurements in section 4.1.4, the multi-cluster model is
arguably biased towards small clusters. As it happens, STC tends to cre-
ate small clusters and so under the one-cluster model it performs poorly,
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while under the multi-cluster model it performs well. To balance the lim-
itations of Search Result Reordering, Zamir included a less contentious
merge-then-cluster evaluation that used precision and pairwise accuracy.
However, this used synthetic ideal clusterings that were partitions and so
STC, which creates overlapping clusters, was at a natural disadvantage,
and perhaps unsurprisingly, was outperformed by k-means.

4.5.2 Lingo

Osinski et al. evaluated Lingo in two ways: in [137] they conducted a very
small user study, and in [135] they conducted a qualitative evaluation us-
ing a merge-then-cluster approach. They chose to perform a qualitative
evaluation because they were discouraged by the limitations of their ear-
lier quantitative evaluation in [164]. Specifically, they felt limited by hav-
ing to use a constrained ideal clustering because they felt these unfairly
penalize equally justifiable clustering decisions. For example, as depicted
in figure 4.33, a variety of structurally different clusterings may be equally
good, but all are penalized for differing from the ideal clustering, which
has been artificially constrained to a coarse single-level disjoint clustering.

In [164] they used Byron Dom’s entropy measure, an information theo-
retic measure that is similar to Mutual Information, to evaluate STC. How-
ever, since the measurement could not cope with overlapping clusters,
they had to restrict STC to constructing a partition, a serious limitation
that undoubtedly affected STC’s performance very significantly as shown
by Zamir earlier in [203].

4.5.3 Merge-Then-Cluster

Merge-then-cluster is an approach that enables the rapid construction of
ideal clusterings. Osinski et al. [135] used the merge-then-cluster ap-
proach by finding sets of pre-categorized documents using the Open Di-
rectory Project (ODP) and then merging them together to form sets of doc-
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Figure 4.33: Comparing clusterings against a constrained ideal clustering leads

to equally justifiable clusterings being penalized.

uments to cluster (another source for pre-categorized documents is news-
groups as used by Strehl [167]). The categorizations from the ODP form
a partition of the documents and represent an ideal clustering. Different
ideal clusterings can be found by merging different sets of clusters. To
evaluate Lingo, Osinski et al. selected some diverse categories such as
movies, health, and computer science, as well as some related categories
such as MySQL and PostgreSQL and then merged these together in vari-
ous combinations.

In using merge-then-cluster, there is a tradeoff between the realism of
the document set and the accuracy of the ideal clustering. When several
very distinct categories are combined, such as movies and health, the re-
sulting document set is not very natural because it doesn’t reflect the typ-
ical result set encountered when performing web search. However, the
corresponding ideal clustering is very accurate as the probability of there
being overlapping documents between such diverse topics is low. An un-
natural result set is particularly bad for evaluation, as it is significantly
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easier for clustering algorithms to separate distinct documents than to sep-
arate similar documents.

Conversely, when very similar categories are combined, such as MySQL
and PostgreSQL, the resulting document set is more natural (in fact the
first result from Google for the query “open source databases” is MySQL
and the second is PostgreSQL). However, the corresponding ideal clus-
tering is generally inaccurate because there is likely to be a lot of overlap
between these topics, overlap that is not reflected in the ideal clustering.
These inaccuracies with the ideal clustering cause bias that can unjustly
penalize some algorithms.

While merge-then-cluster has problems, it is widely used [203, 135, 76,
167, 33] because it provides an extremely efficient method for constructing
result sets and their corresponding “ideal” clusterings. Constructing ideal
clusterings manually from a set of search results is much better because it
enables the identification of overlapping topics, the construction of hierar-
chies, and the inclusion of clusters at different levels of granularity, but as
discovered when constructing the ideal clusterings used in this thesis, it is
very laborious and very time consuming. One important avenue for fu-
ture research is to find an efficient method for constructing natural result
sets with accurate ideal clusterings.

4.5.4 Modifying Measurements

Researchers have used a wide variety of measurements for gold standard
evaluations. Strehl [167] used Purity, Entropy, Precision, Recall, F-measure,
and Mutual Information, Halkidi et al. [76] used F-measure and the Rand
Index, and as noted already, Zamir [203] used Precision and pairwise accu-
racy. However, many researchers have had to make minor modifications
to the measurements to obtain non-spurious results.

Hou et al. [87] used Purity, but compared against the top-level topics
and the lower-level topics separately to account for the hierarchical nature
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of their algorithm. Wang et al. [188] used Precision, Recall, and Entropy,
but removed clusters with fewer than 3 documents to avoid problems with
worthless singleton clusters. Schenker et al. [155] used Mutual Informa-
tion and the Rand Index, but altered the ideal clustering to remove over-
lap. Cheng et al. [33] used F-measure, Entropy, and Purity, but modified
them to take account of the hierarchical nature of their non-overlapping
ideal clustering.

4.5.5 Summary

Researchers use a hodgepodge of methods to evaluate their algorithms
and often face tradeoffs between bias towards one type of clustering or
another. They often work around these limitations as best they can by
making small modifications to the measurements, by restricting the result
set, by restricting the ideal clustering, by restricting the clusterings, or by
limiting some algorithms. Although these “solutions” give some indica-
tion of the effectiveness of a clustering algorithm, they are certainly not
ideal.

The rest of this chapter details one possible implementation of qual-
ity and coverage measurements that enable the unbiased comparison of
algorithms that produce structurally different clusterings against a gold
standard, while having all the properties of good measures discussed so
far in this chapter.

4.6 New Ideal Clustering Representation

4.6.1 A Structurally Richer Ideal Clustering

QC4 is a measure that uses a richer ideal clustering that is structurally
flexible, thereby meeting the requirements of a good evaluation method
as discussed in section 4.1.2. This structural flexibility enables clusterings
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to be compared without bias towards any specific characteristics present
in the ideal clustering, as shown in figure 4.34.

Figure 4.34: Clusterings of any structure can be compared against a rich ideal

clustering without bias towards certain characteristics.

QC4’s ideal clustering structure is a hierarchy of topics, organized in
levels, so that the set of topics at the top-level represents a coarse cate-
gorization of the pages, and the sets of topics at lower levels represent
progressively finer categorizations. This allows QC4 to fairly compare al-
gorithms that produce clusterings of different granularity and to compare
algorithms that generate hierarchical clusterings.

Topics may overlap other topics (at the same and different levels), since
real pages may belong to multiple topics. However, all pages must be con-
tained in at least one topic at each level. This makes it possible to specify
the full range of semantically meaningful topics found in the data, without
being constrained to just disjoint topics.

Since search engines often return outliers — pages that are unrelated
to all the other pages — the ideal clustering may contain a single outlier
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topic (present at every level) that contains all the outliers. The outlier topic
must be disjoint from every other topic. QC4 ignores the outlier topic
when computing quality and coverage and ignores clusters that contain a
majority of outliers when computing quality.

4.6.2 Measuring Overall Performance using Quality and

Coverage

Gold standard methods compare clustering algorithms by comparing their
output clusterings to the ideal clustering. As discussed in section 4.1.3, this
comparison should occur on two dimensions: quality and coverage.

In addition to the notation in section 4.3, the rest of this chapter uses
the following notation:

L is the set of levels from the topic hierarchy (e.g. 1, 2, 3)
l is an individual level from L

T l is the set of topics at level l
Td is the set of topics containing document d
sub(t) is the set of topics containing t and all descendants of topic t
lvl(t) is the level of topic t

QC4 defines four overall measurements of performance, two based on
Cluster Quality QU(c) and two based on Topic Coverage CV (t), which
will be defined in sections 4.7 and 4.8 respectively. The overall measure-
ments of Clustering Quality, AQ and WQ are the average of the cluster
qualities, but in WQ they are weighted by cluster size.

AQ = average quality =

∑
c∈C QU(c)

|C|

WQ = weighted quality =

∑
c∈C QU(c)|Dc|∑

c∈C |Dc|
Similarly, the overall measurements of Clustering Coverage, AC and

WC are the average of the topic coverages, but in WC they are weighted
by topic size. However, as the Topic Coverage measure incorporates the
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coverage of each topic’s children, the Topic Coverage is averaged over just
the top-level topics from the ideal clustering.

AC = average coverage =

∑
t∈T 1 CV (t)

|T 1|

WC = weighted coverage =

∑
t∈T 1 CV (t)|Dt|∑

t∈T 1 |Dt|
The average measures give a fairer measure of the smaller, fine grained

clusters and topics; the weighted measures give a fairer measure of the
larger, broad clusters and topics. This avoids bias from aggregate results
as discussed in section 4.1.4.

4.7 New Quality Measure

As section 4.4 explained, none of the existing measurements has all the
properties required of a good quality measure as set out in section 4.2.
Therefore, QC4 introduces a new measure of cluster quality — an im-
proved version of Entropy that

1. is computed at the level of granularity that contains the single best
matching topic to account for hierarchical topics;

2. uses a modified Precision measure to account for overlapping clus-
ters;

3. is discounted to account for random clusterings, singleton cluster-
ings, giant clusters, segmented clusters, and limited user time.

4.7.1 An Improved Version of Entropy

QC4’s measure of cluster quality, QU(c), is based on a modified Entropy
measure, E(c). Standard Entropy is unsuitable because it fails on worth-
less clusterings, segmented clusters, overlapping topics, hierarchical top-
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ics, and does not account for limited user time. However, as an informa-
tion theoretic measure it does consider cluster composition, unlike Pre-
cision and F-measure, which makes Entropy a good starting point for a
good measure of cluster quality.

The standard Entropy measure does not work with overlapping topics
since pages in multiple topics are overcounted. There are two kinds of
overlap: overlap of topics at different levels, and overlap of topics at the
same level.

4.7.1.1 Overlap between Levels

Overlap between levels can be addressed by computing the Entropy over
the topics in a single level as shown in figure 4.35. QC4 chooses the level13,
L(c), containing the topic that is the most similar to the cluster as mea-
sured by the standard F-measure, F (c, t), defined in section 4.3. Then it
computes the Entropy using a modified Precision measure, P ′(c, t, tbest),
which addresses overlap within levels as section 4.7.1.2 will explain.

L(c) = cluster-level = lvl

(
argmax

t∈T
{F (c, t)}

)

E(c) = min
tbest∈TL(c)

{
−
∑

t∈TL(c)

P ′(c, t, tbest) log|TL(c)| P
′(c, t, tbest)

}
By computing Entropy over a single level, QC4 compares clusters against

topics of a similar level of granularity. This enables the evaluation of hi-
erarchical clusterings and algorithms that produce clusterings at different
levels of granularity.

4.7.1.2 Overlap within Levels

The overlap of topics within a level is addressed by the modified Precision
measure, P ′(c, t, tbest). To eliminate overcounting, the modified Precision

13If multiple topics maximize F , the one with lowest level is selected.
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Figure 4.35: QC4 calculates the modified Entropy of a cluster across the topics at

the best matching level of granularity.

measure counts pages in the topic that best matches the cluster (tbest) as if
they were only in that topic as shown in figure 4.36, and then normalizes
the Precision to remove the effect of any other overcounting as shown in
figure 4.37.

P ′(c, t, tbest) =



|Dc,t|
|Dc|

if{t = tbest}

(|Dc| − |Dc,tbest|) |Dc,t \Dc,tbest|
|Dc|

∑
t′∈TL(c)\{tbest}

|Dc,t′ \Dc,tbest|
otherwise

With these modifications E(c) compares clusters against the topics of
an appropriate level of granularity and allows both disjoint and overlap-
ping topics to be handled fairly, thus resolving the problems the standard
Entropy measure had with overlapping topics and hierarchical topics.

4.7.1.3 Justification of modified Precision

The normalization process used in the modified Precision measure ensures
that modified Precision behaves on overlapping topics in a similar way to
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Figure 4.36: The modified Precision measure counts pages in the best matching

topic as if they were only in that topic.

standard Precision on disjoint topics.
Standard Precision has two useful properties on disjoint topics:

1.
∑

t∈T P (c, t) = 1

2. the Precision of a pure14 cluster is 1 for its corresponding topic and 0
for all other topics

This enables Precision to be viewed as measuring three factors:

1. the purity of a cluster with respect to its best matching topic

2. the total impurity (1− purity) of a cluster

14a subset of a single topic
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Figure 4.37: The modified Precision measure normalizes the counts to remove

the effect of overcounting for any remaining overlap between topics.

3. how that impurity is distributed between the remaining topics

The modified Precision measure mimics standard Precision, while ex-
tending it to overlapping topics and has the analogous properties:

1.
∑

t∈TL(c) P ′(c, t, tbest) = 1 (as shown in proof 4.1)

2. the modified Precision of a pure cluster is 1 for its best matching topic
and 0 for all other topics (as shown in proof 4.2)

Different components of the modified Precision measure capture the three
factors measured by Precision. As highlighted in equation 4.1, the blue,
green, and brown components capture factors 1, 2, and 3 respectively.

P ′(c, t, tbest) =



|Dc,t|
|Dc|

if{t = tbest}

(|Dc| − |Dc,tbest|) |Dc,t \Dc,tbest|
|Dc|

∑
t′∈TL(c)\{tbest}

|Dc,t′ \Dc,tbest |
otherwise

(4.1)
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∑
t∈TL(c)

P ′(c, t, tbest)

=
|Dc,tbest|
|Dc|

+
∑

t∈TL(c)\{tbest}

{
(|Dc| − |Dc,tbest|) |Dc,t \Dc,tbest|
|Dc|

∑
t′∈TL(c)\{tbest}

|Dc,t′ \Dc,tbest|

}

=
|Dc,tbest|
|Dc|

+
(|Dc| − |Dc,tbest|)

|Dc|

∑
t∈TL(c)\{tbest}

|Dc,t \Dc,tbest|∑
t′∈TL(c)\{tbest}

|Dc,t′ \Dc,tbest|

=
|Dc,tbest|+ |Dc| − |Dc,tbest|

|Dc|

= 1

Proof 4.1: The sum of purity and total impurity is 1 for the modified Precision

measure
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Assuming cluster c is pure with respect to its best
matching topic, tbest, then

|Dc,tbest| = |Dc| (1) Since c ⊂ tbest

∴
|Dc,tbest |
|Dc| = 1 (2)

∴ P ′(c, tbest, tbest) = 1 (3)

|Dc| − |Dc,tbest | = 0 (4) From (1)

∴
∀t ∈ TL(c), t 6= tbest

=⇒ P ′(c, t, tbest) = 0
(5)

Proof 4.2: The modified Precision of a pure cluster is 1 for its best matching topic

and 0 for all other topics
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4.7.1.4 Fixing Entropy’s Remaining Problems

Even with its improvements, the modified Entropy measure still fails on
worthless clusterings, segmented clusters, and does not account for lim-
ited user time.

Cluster Quality,QU(c), accounts for the remaining faults with the mod-
ified15 Entropy measure, E(c), by scaling it down using two new mea-
sures: Srandom(c) and Ssegment(c). Srandom(c) accounts for worthless ran-
dom clusterings and worthless giant clusters, while Ssegment(c) accounts
for segmented clusters, worthless singleton clusterings, and limited user
time. Cluster Quality also inverts the modified Entropy measure so that 0
represents a worthless clustering and 1 represents a perfect clustering.

QU(c) = (1− E(c)) min{1, Srandom(c), Ssegment(c)}

4.7.2 Discounting Random Clusterings

Random clusters are similar in composition to that of the expected random
cluster, as shown in section 4.2.8. QC4 uses this property to discount the
performance of worthless random clusterings and worthless giant clus-
ters.

QC4 only needs to consider random clusters, as a giant cluster (a clus-
ter that contains every document) is merely a special kind of random clus-
ter. Specifically, a giant cluster is a random cluster containing close to |D|
documents and in fact, a giant cluster with exactly |D| documents has ex-
actly the composition of the expected random cluster.

4.7.2.1 Partitions and Expected Random Clusters

The Srandom(c) measure should maximize the probability of penalizing ran-
dom clusters and minimize the probability of penalizing good clusters.
The measure’s performance depends on the distance between the expected

15The standard Entropy measure also exhibits these faults.
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random cluster and good clusters, which depends on the labelled partition
(section 4.2.8) of the documents.

Regardless of the partition, random clusters will generally be similar
in composition to the expected random cluster and penalized accordingly.
However, with a labelled partition that has no semantic basis, even good
clusters could be similar in composition to the expected random cluster.

Using the ideal clustering as the partition for constructing the expected
random cluster ensures that good clusters will not be close to the expected
random cluster, since clusters close to the expected random cluster provide
no more information than the original result set and therefore would not
be good clusters. Therefore, QC4 bases the partition it uses to construct
the expected random cluster on the ideal clustering.

4.7.2.2 Transforming Overlapping Topics into Disjoint Regions

The topics from the ideal clustering provide a set of labels, but they do
not necessarily form a partition because they might contain overlapping
topics. However, it is possible to transform the topics into a partition by
considering each unique intersection of topics as a region. Reg(l) defines
such a transformation of the topics at level l of the hierarchy.

Reg(l) = {r ⊆ D|(∃Tα ⊆ T l)(|r| > 0 ∧ r =
⋂
t′∈Tα

Dt′ \
⋃

t′′∈T l\Tα

Dt′′)}

where r is a disjoint set of documents, Tα is a subset of the topics at level l,
t′ and t′′ are topics, and where Dt′ and Dt′′ are sets of documents.

Figure 4.38 shows the seven regions given by the region transforma-
tion function, Reg(l), applied to three overlapping topics. Each disjoint
region can be expressed as the difference between the intersection of a set
of topics and the union of the remaining topics, as shown in table 4.12.
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Figure 4.38: Three overlapping topics can be divided into at most seven disjoint

regions

Table 4.12: Each disjoint region of figure 4.38 can be expressed as the difference

between the intersection of Tα and the union of T l \ Tα.

r =
⋂
r′∈Tα

Dr′ \
⋃

r′′∈T l\Tα

Dr′′

r1 = A \ (B ∪ C)

r2 = (A ∩B) \ C

r3 = B \ (A ∪ C)

r4 = (A ∩ C) \ B

r5 = A ∩B ∩ C
r6 = (B ∩ C) \ A

r7 = C \ (A ∪B)

4.7.2.3 Penalizing Random Clusters

To avoid penalizing non-random clusters, QC4 should penalize only clus-
ters close to the expected random cluster and the penalty should decrease
with the distance from the expected random cluster.

The normalized region fraction,NRF (c, r), is the fraction of documents
from a region, r, in a cluster, c, normalized so that

∑
r∈Reg(L(c))NRF (c, r) =
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1.

NRF (c, r) =

|Dc

⋂
r|

|r|∑
r∈Reg(L(c))

|Dc

⋂
r|

|r|

where L(c) is the level of cluster c (section 4.7.1.1). In the expected ran-
dom cluster, the fraction of documents from each region is the same. In
non-random clusters, and particularly in good clusters, the fraction of doc-
uments from each region is very different. This allows the differentiation
of random clusters and non-random clusters based on how uniformly a
cluster disperses its documents over the regions.

QC4 measures the uniformity, U(c), of a cluster using an Entropy based
measure.

U(c) = −
∑

r∈Reg(L(c))

NRF (c, r) log|Reg(L(c))|NRF (c, r)

A cluster that has documents from lots of different regions will have higher
entropy than a cluster whose documents are all from the same region.
U(c) has a range of [0, 1], is maximized by the expected random cluster
(which has uniform NRF values of 1

|Reg(L(c))| for every region), and is min-
imized by pure clusters. The smaller the value of U(c), the greater the
distance from the expected random cluster to the cluster, and the smaller
the penalty applied to the cluster.

Finally, QC4 inverts the uniformity measure to discount uniform clus-
ters, and applies a threshold of 5%, so that only the most uniform clusters
(those that are most likely to be random) are discounted.

Srandom(c) =
1− U(c)

0.05

4.7.2.4 Accuracy of the Random Cluster Penalty

To test the accuracy of the Random Cluster Penalty, Srandom(c), I ran a
number of experiments on different ideal clusterings. Each experiment
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enumerated every distinct cluster composition and calculated the random
cluster penalty. The composition of a cluster depends on the number of
documents from each topic, but not the documents themselves. For exam-
ple, a cluster with 5 documents from topic one and 10 from topic two was
considered distinct from one with 5 from topic one and 11 from topic two,
but not distinct from a cluster with 5 different documents from topic one
and 10 from topic two.

Figure 4.39 shows the results for three of these experiments.16 The top
row reflects a large cluster selected from a skewed ideal clustering, the
middle row reflects a normal cluster selected from a balanced ideal clus-
tering, and the bottom row reflects a small cluster selected from a balanced
ideal clustering. The first column shows the frequency of randomly gener-
ated clusters as per the simulations and figures in section 4.2.8. The second
and third columns show the penalty applied to the clusters by QC4 and an
alternate method based on Mutual Information respectively. The amount
of penalty corresponds to the colour band, with aqua, purple, green, red,
light blue, and dark blue corresponding to 80–100%, 60–80%, 40–60%, 20–
40%, 0–20%, and 0% respectively.

The left column shows where random clusters occur most frequently,
and consequently, where it is most important to penalize random clusters.
The middle column shows the penalty applied by QC4. In all three cases,
QC4 applied the strongest penalty to the most frequently occurring ran-
dom clusters.

In the top row, QC4 applied a weak penalty to many clusters in the bot-
tom left corner of the plot (the region that corresponds to the black outline
in the top-left plot). Although the relative frequency of random clusters in
this region is low, the raw data shows that many random clusters do oc-
cur here, and consequently, QC4 is correct to penalize them. Furthermore,
even if some real clusters did occur in this region, they would be useless

16The three experiments correspond to the random cluster simulations discussed in
section 4.2.8.
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because they would be similar to the original result set, and therefore there
is little risk in penalizing them.

In the bottom row, QC4 applied no penalty to many clusters that oc-
cur at random frequently. Because the clusters are small, there is less dis-
tance between the good clusters and the random clusters, and therefore,
the random generation of clusters is more likely to produce good clus-
ters. In fact, in this case, some of the random clusters were good clusters.
Consequently, it is correct for QC4 to leave many of the random clusters
unpenalized in this case.

For comparison, the right column shows the penalty applied by an al-
ternate method based on Mutual Information. Mutual Information was
the only standard measurement to identify the giant and random cluster-
ings correctly in the synthetic test cases described in section 4.4.4. The
method was normalized to account for its variable maximum score, the
ideal clustering was transformed into a partition to account for overlap,
and a threshold was applied so that only the worst clusters were penal-
ized.

In all three cases, the alternate method based on Mutual Information
applied the strongest penalty to the most frequently occurring random
clusters. However, in the middle row and the bottom row, it penalized
many real clusters and many good clusters. In the top row, it penalized
some reasonable clusters near the bottom right corner of the plot and failed
to penalize many of the less frequent random clusters in the bottom left
corner.

4.7.3 Discounting Segmented Clusters

Segmented clusters contain a subset of the documents from a topic and as
explained in section 4.2.5, should have lower quality. To account for seg-
mented clusters, QC4 scales down the quality measure of clusters that are
much smaller than the topic they focus on using the segmentation mea-
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sure Ssegment(c). As noted in section 4.4.4, the worthless singleton cluster-
ing represents the extreme case of segmentation (where clusters contain
just a single document) and so in addressing segmentation QC4 addresses
the singleton clustering too.

4.7.3.1 Segmentation Measure

Assume the individual segment measure, S(c, t), measures how much of
topic t is contained in cluster c. S(c, t) would be 1 if c contains all of t, and
0 if c contains none of t. If a cluster were pure, the individual segment
measure would be a good way to discount for segmentation. However,
clusters are often impure and contain documents from multiple topics. To
account for this impurity the segmentation measure, Ssegment(c), averages
the individual segment measure over all topics and weights them by Mod-
ified Precision, P ′(c, t, tbest), to account for the degree to which the cluster
focuses on each topic. The segmentation measure uses Modified Precision
to account for overlapping topics and computes the average over all topics
at the level of the cluster, TL(c), to account for hierarchical topics.

Ssegment(c) = max
tbest∈TL(c)

{ ∑
t∈TL(c)

P ′(c, t, tbest)S(c, t)

}

4.7.3.2 Individual Segment Measure

The individual segment measure, S(c, t), should be lower when the seg-
ment is smaller. If the relationship between the segment size and the
topic size were linear, Recall, R(c, t), would make a good individual seg-
ment measure. However, the relationship is non-linear because a cluster
with 90% of a topic’s documents is only marginally more useful than one
with 80%, whereas one with 20% is much more useful than one with 10%.
Therefore, the individual segment measure should have a decreasing first
derivative.

The situation is complicated further because particularly small clusters
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are inherently less useful, as the range of documents in a very small cluster
is unlikely to be representative of its topic and users may have trouble un-
derstanding the cluster’s intention. With a decreasing first derivative, the
marginal value of adding a document is highest for the first document and
lowers for each subsequent document. However, the marginal value of the
first document is less than the second, which is less than the third, and so
on, until the cluster is large enough to represent the topic. Therefore, the
individual segment measure’s first derivative should increase until an in-
flection point that occurs when the cluster is sufficiently large and then
decrease.

A first version of the individual segment measure, S1(c, t), meets the
aforementioned requirements and as shown by the blue curve in figure
4.40, it has a first derivative of the desired type.

S1(c, t) = 2 · 2

(
−1

R(c, t)

)
= 2

(
1− 1

R(c, t)

)

The inverted Recall represents the value left to capture from the topic and
has a range of [1,∞). Exponentiating the negative of this creates a function
with a range of [0, 0.5] with the desired first derivative. Multiplying by 2

normalizes the range to [0, 1].

4.7.3.3 Accounting for Limited User Time

The absolute cluster size is also important, because the time users have to
examine the cluster contents is limited. As discussed in section 4.2.9, qual-
ity should account for limited user time. Specifically, where two clusters
contain the same fraction of their respective topics, the cluster with the
larger topic should have higher quality, and consequently, less discount
due to segmentation.

For a given fraction, S1(c, t) is invariant to changes in |Dt|, and conse-
quently, does not account for limited user time. Additionally, the inflection
point of S1(c, t) always occurs when R(c, t) = 1

2
loge 2 ≈ 0.35, but for larger
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Figure 4.40: A plot showing clusters with various levels of recall R. The red

curve shows Recall, R(c, t), the green curve shows S1(c, t), and the blue curve

shows the first derivative of S1(c, t).

topics, a smaller fraction of documents will be representative of the topic.
To account for both of these problems, QC4 creates S2(c, t), which adjusts
the value left to capture by a measure of the value in capturing a fixed
portion of the topic, 1

log2 |Dt|
.17

S2(c, t) = 2

(
−1

R(c, t) log2 |Dt|

)

S2(c, t) is then normalized to [0, 1] to give the individual segment measure,
S(c, t).

S(c, t) = 2

(
1

log2 |Dt|

)
· 2

(
−1

R(c, t) log2 |Dt|

)

= 2

(
1− 1

R(c,t)

log2 |Dt|

)

17When the topic is a singleton, the value is redefined as 1.
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|Dc|

Figure 4.41: The three plots correspond to topics with 10, 100, and 1000

documents respectively and show clusters of varying size, |Dc|. The red curves

show Recall, R(c, t), the green curves show the individual segment measure,

S(c, t), and the blue curves show the first derivative of the individual segment

measure, scaled to fit the plots, |Dt| · ∂
∂|Dc|S(c, t).
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Figure 4.41 shows that S(c, t) does account for limited user time. Specif-
ically, for a given fraction, the quality is higher for larger topics, as shown
by the green curve being higher at all levels of Recall (the red curves) for
larger topics. Additionally, in larger topics, a smaller fraction is considered
representative, as shown by the inflection points in the blue curves shift-
ing left for larger topics — for 10, 100, and 1000 documents the inflection
points occur at 10.4%, 5.2%, and 3.5% Recall respectively.

4.8 New Coverage Measure

As section 4.4 explained, none of the existing measurements has all the
properties required of a good coverage measure as set out in section 4.2.
Therefore, QC4 introduces a new measure of topic coverage.

QC4’s measure of topic coverage is an improved version of Recall that

1. uses Precision to account for the composition of clusters.

2. is computed recursively at the level of individual documents to ac-
count for overlapping and hierarchical topics.

3. is discounted to account for random clusterings, singleton cluster-
ings, giant clusters, and segmented clusters.

4.8.1 An Improved Version of Recall

QC4 accounts for overlapping and hierarchical topics by computing over-
all coverage using the topic coverage of just the top-level topics, as de-
scribed in section 4.6.2. This assumes the measure of individual topic cov-
erage incorporates the coverage of child topics and addresses any over-
lap between child topics. QC4’s measure of Topic Coverage must account
for this requirement in addition to those of a good coverage measure de-
scribed in section 4.2.
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QC4’s Topic Coverage is based on Recall, R(c, t), in that it measures
the fraction of a topic that is covered. Standard Recall is suitable when
the clusters are pure and the topics are flat (non-hierarchical), but fails on
worthless clusterings, segmented clusters, hierarchical topics, and does
not account for cluster composition. QC4 must account for these deficien-
cies.

Recall uses the presence of a document in a cluster to indicate a docu-
ment is covered. Topic Coverage, CV (t), extends this notion and measures
the extent to which each individual document is covered using Document
Coverage, DC(d, t), which accounts for coverage in a cluster representing
the topic or a sub-topic, overlap between sub-topics, and addresses the
deficiencies of Recall.

CV (t) =

∑
d∈Dt DC(d, t)

|Dt|
Document Coverage, DC(d, t), is computed recursively down the levels of
the topic hierarchy, using a measure of the Individual Document Cover-
age, IDC(d, t), which will be defined in section 4.8.4.

4.8.2 Accounting for Cluster Composition

As described in section 4.2.4, QC4 must account for cluster composition
when computing Topic Coverage.

For a document in a topic to be covered, it must be discoverable by a
user, and therefore, a document is covered to some extent provided some
cluster contains it. However, users do not explore all clusters; instead, they
examine clusters that represent the topic of interest, and consequently,
they are unlikely to find a document in a cluster that appears to be associ-
ated with a different topic. Therefore, a document will be better covered
if it is contained in a cluster that matches a topic containing the document
and the better the match, the better the coverage.

In reality, users determine what clusters represent using cluster labels
or descriptions, which are often generated by another algorithm that should
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be subject to an independent evaluation. Separating these concerns re-
quires a proxy for the likelihood of a user examining a cluster when seek-
ing a given topic. In general, algorithms generate cluster labels based on
cluster composition. The probability that users can determine that a clus-
ter is associated with a topic is dependent on the fraction of the cluster
from the topic, or more specifically, the Precision, P (c, t), of the cluster
with respect to the topic.

The first version of Individual Document Coverage, IDC1(d, t), accounts
for cluster composition by finding the Precision of the best matching clus-
ter that contains the document.

IDC1(d, t) = max
c∈Cd
{P (c, t)}

where Cd is the set of clusters containing document d.

4.8.3 Computing Document Coverage Recursively

If cluster composition were the only concern, IDC1(d, t) would be a good
measure of Document Coverage. However, Document Coverage must
also account for overlapping and hierarchical topics, as discussed in sec-
tions 4.2.6 and 4.2.7 respectively.

4.8.3.1 Accounting for Hierarchical Topics

When presented with hierarchical clusters, users start by choosing the
most specific cluster that is relevant and if they fail to find sufficiently
many relevant documents, they proceed to look at progressively less spe-
cific, but still relevant clusters. For example, a user who was interested in
Indy Car Racing that was presented with clusters corresponding to the hi-
erarchical topics in figure 4.42, would start by looking at the Indy cluster,
and failing18 that, the Racing cluster, and finally, the Car cluster.

18Failure may occur because a cluster does not exist or because it contains insufficient
relevant documents.
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Figure 4.42: A subset of one possible topic hierarchy for the query “jaguar”

Consequently, a document in a topic is covered to some extent when a
cluster contains the document and the cluster represents either the topic,
or a sub-topic (that contains the document) of the topic. This definition
applies recursively, as the document will be discoverable at any level of
the hierarchy. For example, a document relating to Indy will be covered
in the Car topic of figure 4.42 if it is contained in at least one of the Car,
Racing, or Indy clusters.

Based on this recursive definition, the first version of Document Cover-
age,DC1(d, t), finds the maximum individual document coverage over the
topic and all sub-topics (that contain the document) of the topic. DC1(d, t)

uses a second version of Individual Document Coverage, IDC2(d, t), which
is the first version, IDC1(d, t), modified to account for the hierarchy by
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only considering clusters at the same level as the topic.

DC1(d, t) = max
t′∈Td∩sub(t)

{
IDC2(d, t′)

}

IDC2(d, t) = max
c∈{ci∈Cd|L(ci)=lvl(t)}

{
P (c, t)

}
where Td is the set of topics containing document d, sub(t) is the set of
topics containing t and all descendants of topic t, and where lvl(t) is the
level of topic t.

4.8.3.2 Accounting for Overlap

Document Coverage must also account for overlap between clusters and
between topics. DC1(d, t) accounts for overlap between clusters by evalu-
ating all of them and using the one that provides maximum coverage, but
does not account for overlap between topics.

QC4 accounts for the overlap between top-level topics using the overall
coverage measures, which aggregate the coverage of individual top-level
topics and therefore require documents in multiple top-level topics to be
covered by multiple clusters, representing the different topics, if complete
coverage is to be achieved. This is in contrast to DC1(d, t), where doc-
uments in multiple lower-level topics need only be covered by a cluster
representing one of them. For example, if the home page of an Indy Club
were contained in a cluster representing the Racing topic, but not in any
clusters representing the Clubs topic; the document will only be covered
for half the potential users19 of the document, yet DC1(d, t) may give it
complete coverage.

To account for overlap, the definition of when a document is covered
requires refinement. Specifically, a document in a topic is covered to some
extent when clusters contain the document and the clusters represent ei-
ther the topic, or all the direct sub-topics (that contain the document) of the

19This assumes an equal number of users are interested in the Clubs and Racing topics.
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topic. This revised definition continues to apply recursively. For example,
the home page of an Indy Club is covered if it is contained in

• clusters representing Car, OR

• clusters representing Clubs, AND either

– clusters representing Racing, OR

– clusters representing Indy.

To account for this, the final version of Document Coverage, DC(d, t), re-
cursively computes the coverage of a document in a topic using an aver-
age of the Individual Document Coverage of the topic’s direct sub-topics.
(Note that IDC(d, t) is the final version of the Individual Document Cov-
erage measure that will be defined in section 4.8.4.)

DC(d, t) = DC(d, t, 1)

DC(d, t, l) =

∑
t′∈T l∩Td∩sub(t) max

{
IDC(d, t′), DC(d, t′, l + 1)

}
|T l ∩ Td ∩ sub(t)|

where l denotes the level in the topic hierarchy.

With some simplifying assumptions, figures 4.43 and 4.44 illustrate the
recursive process of computing Document Coverage using DC(d, t), for
all the documents in a clustering.

4.8.4 Discounting Worthless Clusterings

Although Document Coverage,DC(d, t), accounts for cluster composition,
overlapping clusters, overlapping topics, and hierarchical topics, if it used
IDC2(d, t) as its measure of Individual Document Coverage, it would still
fail on worthless clusterings such as random clusterings, singleton cluster-
ings, giant clusters, and would still not account for segmented clusters.
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Figure 4.43: Step 1: Find the best matching between topics and clusters for each

document

The final Individual Document Coverage measure, IDC(d, t), accounts
for the remaining faults by scaling down the Individual Document Cover-
age using two measures: Srandom(c) and Stranche(c).

IDC(d, t) = max
c∈{ci∈Cd|L(ci)=lvl(t)}

{
P (c, t) min{1, Srandom(c), Stranche(c)}

}
Srandom(c) was defined previously as part of QC4’s quality measure in sec-
tion 4.7.2 and accounts for worthless random clusterings and worthless
giant clusters, while Stranche(c) is new and accounts for segmented clusters
and worthless singleton clusterings.

4.8.5 Accounting for Segmentation

Coverage measures assume that users can find the most relevant cluster
easily. When there are many clusters, this is no longer true, because the
time users have to examine the cluster labels and descriptions is limited.
However, relatively large clusters stand out, so users can quickly deter-
mine if they are relevant. Additionally, larger clusters are more valuable
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Figure 4.44: Step 2: Bubble the Individual Document Coverage up the topic

hierarchy to find the top-level Document Coverage

once identified, as explained in section 4.2.5. Therefore, when discount-
ing for segmentation (using Stranche(c)), large clusters should get relatively
smaller discounts than small clusters: the discount for a cluster should
depend on both the number of clusters and its relative size.

As explained in section 4.7.3 for QC4’s quality measure, discounting
segmented clusters also addresses the worthless singleton clustering be-
cause this represents the extreme case of segmentation.

4.8.5.1 Divide Clusters into Tranches

As discussed in section 4.2.5, clusters of a similar size are difficult for the
user to distinguish and should therefore get comparable discounts. For
example, clusters with 9, 10, 11, or 12 documents are comparable, but
are quite different from a 2-document cluster and a 100-document clus-
ter. Furthermore, the relationship between cluster size and similarity is
non-linear. For example, clusters with 10 documents and 100 documents
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are quite different, but clusters with 100,000 documents and 200,000 doc-
uments are quite similar.

To represent the relative size of clusters, QC4 divides the clusters into
tranches with boundaries based on the powers of 4.

tranche(c) = dlog4 |Dc|e

The effect on clusters with up to 1000 documents is to divide them into 6
tranches containing clusters with 1, 2–4, 5–16, 17–64, 65–256, and 257–1024
documents respectively.

The rank of a tranche, rank(n), is defined to be the rank of its largest
cluster when all clusters are ordered by size. For example, if tranche one
(with the smallest clusters) had 10 clusters, tranche two had 15 clusters,
and tranche three (with the largest clusters) had 5 clusters, then the rank
of tranche three would be 0, the rank of tranche two would be 5, and the
rank of tranche one would be 20.

rank(n) =
∞∑

i=n+1

|{c ∈ C|tranche(c) = i}|

4.8.5.2 Discount Segmented Clusters

Generally, users have sufficient time to examine the largest clusters and
they should expect to examine at least as many clusters as there are topics.
Consequently, QC4 should not penalize the largest clusters and it achieves
this by not penalizing clusters in tranches with a rank less than or equal to
the larger of 15 and the number of topics.

rank(tranche(c)) ≤ max{15, |T |}

Ideally, QC4 would penalize clusters in tranches with a rank greater
than the number of topics, but this would unfairly penalize existing algo-
rithms that create clusterings with a small fixed number of clusters. There-
fore, at present, QC4 does not penalize algorithms that create fewer than
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15 clusters. Arguably, it is reasonable for algorithms to create superfluous
clusters, provided the total number of clusters is small, on the basis that
users can successfully comprehend a small number of items simultane-
ously [125]. However, users probably prefer clusterings without superflu-
ous clusters and therefore, as algorithms move to better dynamic cluster
selection strategies, QC4 should penalize algorithms that produce even a
small number of superfluous clusters.

As larger clusters have more value once identified, the penalty should
also account for cluster size, |Dc|. The penalty for segmented clusters,
Stranche(c), is the ratio of cluster size to the rank of the cluster’s tranche,
because clusters with a larger rank are harder to find. Therefore, clusters
with low rank and clusters with a large size relative to their rank are not
penalized, while the remainder are discounted according to their size and
relative rank.

Stranche(c) =


1 if{rank(tranche(c)) ≤ max{15, |T |}}

|Dc|
rank(tranche(c))

otherwise

4.9 Evaluation

I evaluated QC4 in three ways: synthetic testing, real world web page clus-
tering, and comparative hierarchical clustering. In all three, QC4 always
produces the expected result and draws the correct conclusion; none of the
existing measurements can make this claim.

The synthetic evaluation mirrors the evaluation of the existing mea-
surements discussed in section 4.4 and shows that QC4 meets all the re-
quirements of good evaluation measurements from section 4.2, unlike the
existing measurements that fail many of those requirements.

On typical clusterings, for the most part, the existing measurements
produce valid conclusions regarding the relative performance of differ-
ent clustering algorithms. The real world web page clustering evaluation
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shows that QC4 mostly agrees with the existing measurements and there-
fore, it too produces valid conclusions. Where disagreements occur, qual-
itative analysis shows that QC4 is correct as to the relative performance of
algorithms.

The comparative hierarchical clustering evaluation compares real world
clusterings against just the top-level or second-level topics. Good mea-
surements should show a corresponding effect on quality and coverage,
but only QC4 and Cluster F-measure perform correctly.

4.9.1 Synthetic Testing

To test the characteristics of good evaluation measurements as described
in section 4.2, I constructed a suite of synthetic clusterings that cover edge
and boundary cases, as well as other more normal clusterings. None of
the existing measurements passed all these tests as shown earlier by table
4.11. QC4 passed all the synthetic clustering tests as shown by table 4.13.

Section 4.4 presented many interesting test cases that proved problem-
atic for some measurements; tables 4.14 and 4.15 present QC4’s results for
those cases for comparison and completeness.

While the existing measurements can still produce meaningful results
and conclusions, the synthetic tests show that there are conditions under
which the existing measurements can produce inaccurate results. While
most algorithms do not produce worthless clusterings, the other problem
cases are concerning because web page clusterings often have these char-
acteristics. Consequently, the conclusions drawn from the existing mea-
surements are questionable and it is safer to evaluate web page clustering
algorithms using QC4 or another measurement that meets all these prop-
erties.
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Table 4.13: A summary of the properties satisfied by QC4. Green indicates the

measurement has the property, red indicates it does not, and white indicates the

property is not applicable to the measurement.

AQ WQ AC WC

Separate Measures
Basic Quality
Basic Coverage
Size Bias
Perfect Clusterings
Worthless - Singleton
Worthless - Giant
Worthless - Random
Composition - Quality
Composition - Coverage
Segmentation - Quality
Segmentation - Coverage
Overlapping Clusters
Overlapping Topics
Hierarchical Topics
Limited User Time

4.9.2 Real World Web Page Clustering

The real world evaluation used 17 measurements (Mutual Information,
and Average and Weighted versions of QC4 Quality, QC4 Coverage, Pre-
cision, Total Recall, Best Recall, Cluster F-measure, Topic F-measure, and
Entropy) to compare the clustering performance of five web page clus-
tering algorithms (Random Clustering, K-means [166], STC [203], ESTC
[44], and QDC20 [46]) on eight data sets: search results of four different

20QDC was developed as part of this thesis and is discussed in chapter 5.
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Table 4.14: Synthetic test case results for QC4

Quality AQ WQ AC WC

4.19.A 0.799 0.799 0.08 0.009
4.19.B 0.675 0.716 0.12 0.014
4.19.C 0.675 0.716 0.12 0.014
4.19.D 0.554 0.555 0.16 0.018
4.19.E 1 1 0.2 0.023
4.20.A 0.994 0.994 0.184 0.836
4.20.B 0.639 0.983 0.34 0.836
4.20.C 0.751 0.625 0.341 0.134
Singleton 0.003 0.003 0.001 0.001
Giant 0 0 0 0
Random 0.017 0.017 0.004 0.017
4.23.A 0.309 0.28 0.26 0.088
4.23.B 0.412 0.278 0.162 0.098
4.25.A 0.579 0.579 0.166 0.166
4.25.B 0.412 0.412 0.151 0.151
4.25.C 0.732 0.732 0.181 0.181
4.26.A 0.992 0.992 0.18 0.818
4.26.B 0.919 0.919 0.18 0.818

queries (“salsa”, “jaguar”, “gp”, and “victoria university”) using both full-
page and snippet data.

Figures 4.45, 4.46, and 4.47 show the results averaged across the clus-
tering tasks and with the average and weighted versions of each measure-
ment combined by averaging them. The Overall QC4 measurement shown
in figure 4.47 is the average of QC4 Quality (Q) and QC4 Coverage (C).
The figures show the algorithms in order of overall performance accord-
ing to the relevant research literature [203, 44, 46], which ranks the algo-
rithms as QDC, ESTC, STC, K-means, and finally Random Clustering. As
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Table 4.15: More synthetic test case results for QC4

Quality AQ WQ AC WC

4.8 LHS 1 1 1 1
4.8 RHS 0.012 0.29 0.438 0.438
4.8 LHS Blue 1 1 0.333 0.333
4.8 RHS Blue 0.332 0.838 0.333 0.333
4.8 RHS Green 0.016 0.027 0.136 0.136
4.8 RHS Purple 0.001 0.006 0.065 0.065
4.28.A 1.0 1.0 1.0 1.0
4.28.B 0.987 0.989 0.92 0.92
4.28.C 0.974 0.974 0.8 0.8
4.30.A 0.581 0.581 0.089 0.125
4.30.B 1 1 0.779 0.81
4.31.A 1 1 1 1
4.31.B 1 1 1 1
4.31.C 1 1 1 1
4.31.D 1 1 1 1
4.32.A 0.033 0.033 0.004 0.018
4.32.B 0.188 0.188 0.008 0.036
4.32.C 0.674 0.674 0.03 0.136
4.32.D 0.85 0.85 0.06 0.273

shown by figure 4.47, QC4 ranks the algorithms correctly. The algorithms
STC [203] and ESTC [44] are optimized for snippets and full text respec-
tively, and consequently, they should perform better on those; QC4 ranks
ESTC and STC correctly, ranking ESTC–Full Text above ESTC–Snippet and
STC–Snippet above STC–Full Text.

These clustering tasks represent typical web page clustering problems
where existing measurements work reasonably well and generally form
valid conclusions. Consequently, the conclusions of QC4 should gener-
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Figure 4.45: Comparison of evaluation results for different Quality measures

ally agree with the conclusions of the existing measurements. Table 4.16
confirms they do agree by reporting the degree of pairwise agreement be-
tween the measurements, where two measurements agree for a pair of
algorithms if they order them in the same way. Specifically, the average
pairwise agreement between QC4 and the other measurements (85%) is
not significantly different from the average pairwise agreement between
the other measurements (86%). Therefore, QC4 generally makes the same
conclusions as other measurements regarding the relative performance of
different clustering algorithms.

In many cases the disagreement between two measurements is insignif-
icant21, accounting for these, the pairwise agreement for QC4 is 94% and

21i.e. Under both measurements, the performance difference between the algorithms
under disagreement is not significant (p > 0.05).
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Figure 4.46: Comparison of evaluation results for different Coverage measures

for the other measurements it is 92%. Much of the remaining disagreement
occurs because some of the measurements incorrectly evaluate the Ran-
dom Clustering. Best Recall considers the Random Clustering algorithm
superior to many better algorithms, Total Recall and Cluster F-measure
consider it superior to some better algorithms, and while Precision and
Topic F-measure do not consider it superior to any better algorithms, they
give it unjustifiably high performance. After accounting for the Random
Clustering algorithm, the pairwise agreement for QC4 is 97% and for the
other measurements it is 96%.

In the remaining cases where QC4 disagrees with other measurements,
qualitative analysis shows that QC4 reaches the correct conclusion when
other measurements do not. QC4 correctly finds that ESTC outperforms
STC, whereas Mutual Information finds the converse for full text data
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Figure 4.47: Comparison of evaluation results for different Overall measures

because Mutual Information fails on the overlapping clusters produced
by STC. QC4 correctly identifies that QDC–Snippet outperforms ESTC–
Full Text, whereas Topic F-measure finds the converse because Topic F-
measure overemphasizes the mere appearance, rather than correct place-
ment of documents in clusters.22 For a similar reason Total Recall gives un-
justifiably high performance to K-means and incorrectly finds K-means–
Snippet to outperform ESTC–Full Text and QDC–Snippet. Best Recall’s
results lack validity because it finds the Random Clustering algorithm su-
perior to many other algorithms and this shows up in its level of disagree-
ment with other measurements: its agreement with QDC is only 72% and
just 78% with other measurements, which is the lowest level of agreement
between any measurements.

22This relates to Topic F-measure’s failures with Cluster Composition as discussed in
section 4.4.5.
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Table 4.16: The degree of pairwise agreement between measurements

Q P E

Q 100% 89% 83%
P 100% 94%
E 100%

C R
∑

R1

C 100% 89% 72%
R
∑

100% 78%
R1 100%

QC4 MI FC F T

QC4 100% 86% 83% 94%
MI 100% 81% 86%
FC 100% 92%
F T 100%

The experiments suggest that QC4 makes correct conclusions on real
world clustering tasks, even when the existing measurements have prob-
lems. The unjustifiably high performance of random clusters under Preci-
sion, Best Recall, Total Recall, Cluster F-measure, and Topic F-measure is
concerning and should be seriously considered whenever these measure-
ments are used. Their susceptibility depends on the ideal clustering and
some configurations can produce dubious results. It is advisable to avoid
Best Recall completely due to its lack of validity for a wide variety of ideal
clustering configurations.

4.9.3 Comparative Hierarchical Clustering

When a measurement properly accounts for hierarchical topics, the perfor-
mance of a cluster should differ when compared to just top-level topics or
just second-level topics. The comparative hierarchical evaluation uses this
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property to compare the results of measurements for the entire hierarchy,
just the top-level, and just the second-level. When the results do not differ
as expected, the measurement is not accounting for the hierarchy.

The performance of a cluster should differ as shown in table 4.17. When
comparing top-level clusters to second-level topics, quality and coverage
should decrease as the documents in each cluster will divide among more
topics. When comparing second-level clusters to top-level topics, cov-
erage should increase as previously irrelevant documents become rele-
vant. When comparing second-level clusters to top-level topics, the im-
pact on quality is indeterminate as two opposing factors interact. Quality
increases as previously irrelevant documents become relevant, but quality
decreases due to increased segmentation: second-level topics are smaller
than top-level topics, so second-level clusters will typically represent a
smaller fraction of a top-level topic and consequently have greater seg-
mentation. In general, the segmentation effect is more significant and the
net effect will be for quality to decrease.

Table 4.17: The effect on quality and coverage of comparing a cluster against a

single level of the hierarchy

Cluster Topics Quality Coverage
Top-level Top-level Same Same
Top-level Second-level Down Down
Second-level Top-level Indeterminate Up
Second-level Second-level Same Same

QDC, ESTC, and STC produce predominantly top-level clusters — 100%,
100%, and 80% respectively — while K-means produces predominantly
second-level clusters, between 70% – 80%. Figures 4.48, 4.49, and 4.50
show the difference, for each measurement, between the result of com-
paring the algorithm’s clusterings to the entire hierarchy and either the
top-level topics (first column) or second-level topics (second column). A
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yellow dash indicates the results are the same (insignificant difference), a
red downwards arrow indicates the measure decreased significantly, and
a green upwards arrow indicates the measure increased significantly.

Figure 4.48: Quality results for the comparative hierarchical evaluation

Figure 4.48 shows the results for the quality measures. Since QDC,
ESTC, and STC produce mostly top-level clusters, their quality should stay
the same when compared to only top-level topics and reduce when com-
pared to only second-level topics. QC4’s Average and Weighted Quality
measures, highlighted in grey, produce the expected result. Although the
decrease when comparing STC to the second-level topics is not significant,
it is correct because 20% of STC’s clusters are second-level and they offset
the result. Since K-means produces mostly second-level clusters, its qual-
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ity should generally decrease when compared to top-level topics and stay
the same when compared to second-level topics. QC4’s measures produce
the expected result.

Precision and Entropy produce the incorrect results because they do
not account for hierarchical topics. Although Precision produces the ex-
pected result for QDC, ESTC, and STC, it produces the incorrect result for
K-means. When comparing to the entire hierarchy, Precision always com-
pares to just the top-level topics because it compares to the best perform-
ing topics, rather than the best matching topics. Consequently, there is no
change when comparing to just the top-level topics and there is always a
decrease when comparing to second-level topics. Entropy increases in all
instances, because it does not account for overlapping topics and there-
fore underestimates performance when comparing to the entire hierarchy,
since there is overlap between topics at different levels.

Figure 4.49 shows the results for the coverage measures. Since QDC,
ESTC, and STC produce mostly top-level clusters, their coverage should
stay the same when compared to top-level topics and decrease when com-
pared to second-level topics. Since K-means produces mostly second-level
clusters, its coverage should increase when compared to top-level topics
and stay the same when compared to second-level topics. QC4’s Aver-
age and Weighted Coverage measures, highlighted in grey, produce the
expected result.

Total Recall and Best Recall produce the incorrect results because they
do not account for hierarchical topics. Total Recall always increases when
compared to top-level topics and generally decreases when compared to
second-level topics. Best Recall generally stays the same when compared
to either top-level topics or second-level topics.

Figure 4.49 shows the results for the overall measures. As overall mea-
sures combine quality and coverage, their effects should combine too. Since
QDC, ESTC, and STC produce mostly top-level clusters, they should stay
the same when compared to top-level topics and decrease when compared
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Figure 4.49: Coverage results for the comparative hierarchical evaluation

to second-level topics. Since K-means produces mostly second-level clus-
ters, it is indeterminate what should happen when compared to top-level
topics and it should stay the same when compared to second level top-
ics. Average and Weighted Cluster F-measure produce the expected result.
Although the decrease when comparing K-means 70% to the second-level
topics is significant, it is correct because 30% of the clusters are top-level
and they offset the result.

Topic F-measure and Mutual Information produce incorrect results be-
cause they do not account for hierarchical topics. Topic F-measure mirrors
Total Recall and increases when comparing clusters to top-level topics and
decreases when comparing clusters to second-level topics. Mutual Infor-
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Figure 4.50: Overall results for the comparative hierarchical evaluation

mation decreases in all instances because like Entropy, it does not account
for overlapping topics and additionally its maximum value is variable
as discussed in section 4.4.3 and depends on the ideal clustering, which
changes when comparing to just the top-level or just the bottom-level.

In summary, only QC4 and Cluster F-measure produce the correct re-
sult. This was expected, since the synthetic evaluation showed they were
the only measures to account for hierarchical topics. These results provide
further evidence that the problems with existing evaluation measurements
can significantly affect conclusions about performance. The combination
of evidence from the synthetic evaluation, the real world evaluation, and
the comparative hierarchical evaluation justify the use and development
of better measurements like QC4.



Chapter 5

Query Directed Clustering

Queries are often ambiguous: words and phrases are frequently polyse-
mantic and search goals are often narrower in scope than the queries used
to express them. This ambiguity leads to result sets containing distinct
groups of pages that meet different search goals. Clustering can exploit
the internal similarity between the vocabularies of these distinct groups to
identify them and can then present these groups to the user to aide query
refinement.

For ambiguous queries for easy searches (easy ambiguous queries),
clustering methods produce some good clusters, albeit interspersed with
ambiguous, overly specific, low value, and incomprehensible clusters. In
contrast, clustering methods have largely proven ineffective for the inter-
related results of non-ambiguous queries and hard ambiguous queries (the
subject of later chapters in this thesis).

This chapter presents QDC, a query directed web page clustering algo-
rithm that produces higher quality clusterings than other clustering algo-
rithms for easy ambiguous queries. QDC has five key innovations:

1. A new query directed cluster quality guide that uses the relationship
between clusters and the query to improve cluster quality

2. An improved cluster merging method that enhances cluster cover-

189
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age while still generating semantically coherent clusters by using
cluster description similarity in additional to cluster overlap

3. A new cluster splitting method that improves cluster quality by ad-
dressing the cluster chaining (cluster drift) problem

4. An improved heuristic for cluster selection that uses a query directed
cluster quality guide to select a good representation of the top-level
of a hierarchical clustering

5. A new method that improves clusters by ranking the pages by rele-
vance to the cluster

5.1 Clustering and Easy Ambiguous Queries

Web Page Clustering has been applied to many kinds of queries. For most
of these, clustering has some measurable value, but the value is too small
and has no obvious benefit for users. In contrast, clustering is very effec-
tive (due to the distinct vocabulary) and clearly useful (clusters are seman-
tically meaningful to users) for easy ambiguous queries.

5.1.1 Limitations of Clustering

Users must often refine their search by modifying the query to filter out
the irrelevant results. To refine queries effectively users must understand
the result set, but this is time consuming if the result set is unorganized.

A common approach to organize data is clustering. Web page clus-
tering has been widely used to organize search results [14, 201, 123] and
most approaches perform acceptably on the typical test set (easy ambigu-
ous queries), which includes queries like “Jaguar”, “Apple”, “Saturn”, “Jor-
dan”, “Tiger”, and “Salsa” [204, 70]. However, clustering performs poorly
on many interesting queries (non-ambiguous queries and hard ambiguous
queries). Specifically, researchers have found that clustering works well
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for ambiguous terms, but not for entity names and general terms [204]
and that it works well when the target clusters are unrelated (for instance,
Lord of the Rings and MySQL), but performs poorly when the clusters are
closely related (for instance, MySQL and PostgreSQL) [135].

5.1.2 Cluster Vocabularies

Clustering algorithms try to divide a result set into distinct clusters accord-
ing to the vocabulary of the documents. They generally succeed if there
are different groups of documents that have distinct vocabulary and these
groups match concepts that are meaningful to users.

Ambiguous queries should be ideal candidates for clustering: they
contain distinct document groups related to different query interpreta-
tions, which correspond to different search goals, so the groups would
be meaningful to users. However, not all ambiguous queries are ideal for
clustering, because the document groups related to different query inter-
pretations do not necessarily have distinct vocabulary and may instead
share a single common vocabulary.

Ambiguous queries divide into two main classes (easy and hard) based
on the vocabulary overlap of different interpretations. For example, “Jaguar”
is an easy ambiguous query with several interpretations including “car”
and “animal”. The different interpretations of “Jaguar” have little vocabu-
lary in common; for instance, “car” documents use terms like “automobile”
and “fuel”, while “animal” documents use terms like “mammal” and “cat”.
“black bear attacks” is a hard ambiguous query with several interpreta-
tions including “information about black bears” and “instances of attacks
on humans”; but the different interpretations of “black bear attacks” use a
single vocabulary, for instance, terms like “wildlife” and “habitat”.

Non-ambiguous queries have only one interpretation and therefore all
documents share a single vocabulary, making the situation analogous to
that of hard ambiguous queries. This leaves easy ambiguous queries as the
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only case where different semantically meaningful document groups have
distinct vocabulary, and consequently it is the only case where clustering
can be expected to perform well.

5.2 Related Work

QDC reuses the best parts of several simple clustering algorithms to solve
problems faced by the best web page clustering algorithms. QDC also
exploits a semantic relatedness measure, Google Distance [40], to assess
the quality of clusters.

5.2.1 Standard Clustering Algorithms

Researchers have applied all standard data clustering methods [14, 92,
166] to web page clustering: hierarchical (agglomerative and divisive),
partitioning (probabilistic, k-Medoids, k-Means), Fuzzy c-Means, Bayesian,
Kohonen self-organising maps, density based, and many more.

Hierarchical clustering algorithms [209, 68, 31] come in two varieties:
agglomerative (merging) and divisive (subdividing). Agglomerative meth-
ods are bottom-up: they start with one data item per cluster and itera-
tively merge clusters according to some merging criteria. Divisive meth-
ods are top-down: they start with all data items in one big cluster and
recursively split clusters according to some splitting criteria. Often the
process is stopped when the desired number of clusters exist on the fringe
— vagueness of termination is often considered a disadvantage.

Partitional clustering algorithms [17, 75, 203] decompose the data points
into clusters that optimize some objective function. Greedy heuristics are
typically used to create partitional clustering algorithms that find clusters
by starting with some clustering and then iteratively relocating points be-
tween clusters [14].

While the standard algorithms perform poorly in the web page cluster-
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ing domain, they often provide the under-pinning of more effective algo-
rithms including Query Directed Clustering.

5.2.2 Similarity Measures

The standard clustering algorithms typically use data similarity measures
[169, 14, 207, 167] to construct clusters; typical measures for the similar-
ity1 between documents include Minkowski distance2, Cosine similarity,
Pearson correlation3, and extended Jaccard similarity.
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where x and y are n-dimensional document vectors, p is any real number
greater than or equal to one4, and x and y are the mean value over all
dimensions of x and y.

Unfortunately, the standard algorithms using the standard similarity
measures are not effective at producing semantically meaningful clusters.
Metric distances such as Minkowski are particularly ineffective due to the
high dimensional and sparse nature of the textual domain [169]. While the
other standard similarity measures are dramatically more effective than

1Distance and similarity are equivalent since similarity is the inverse of distance.
2Manhattan distance and Euclidean distance are special cases of Minkowski distance.
3Pearson Correlation is typically normalized to the range [0,1].
4p is typically 1 (Manhattan distance) or 2 (Euclidean distance).
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Metric distances [169], they too are ineffective as the most similar docu-
ments are not necessarily semantically similar, because the semantic con-
tent of terms within a document is not homogeneous. QDC accounts for
this non-homogeneity by using Google Distance to measure the semantic
content of terms.

5.2.3 Hierarchical Agglomerative Clustering

Hierarchical Agglomerative Clustering is a bottom-up clustering approach
that treats each document as a singleton clustering and forms a hierarchi-
cal clustering by sequentially merging the most similar clusters according
to one of three linkage metrics [120, 14, 179]: single linkage, group average
(average-link), or complete linkage. Table 5.1 shows the merging criterion
for each linkage metric.

Table 5.1: Linkage metrics for Hierarchical Agglomerative Clustering

Metric Merging Criterion Complexity
Single-link smallest minimum pairwise distance O(n2)

Average-link smallest average pairwise distance O(n2 log n)

Complete-link smallest maximum pairwise distance O(n2 log n)

The hierarchical clustering can be represented by a dendrogram as
shown in figure 5.1. Different clusterings may be found by cutting the den-
drogram, stopping the algorithm when the distance exceeds some thresh-
old.

Interestingly, single-link clustering with a threshold stopping criteria
is equivalent to finding the connected components of a graph, where the
nodes represent the documents and there is an edge between any two doc-
uments with similarity exceeding the stopping criteria.

Some clustering algorithms, including single-link clustering, are sus-
ceptible to cluster chaining (cluster drift) [212]. In a sequence of clus-
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Figure 5.1: A dendrogram showing one possible hierarchical clustering of 9

documents. The vertical dimension corresponds to the distance between

items/clusters.

ters, each cluster may be similar to its immediate neighbours, but com-
pletely dissimilar from clusters further away in the sequence. While a
desirable property for some domains, it is undesirable in the textual do-
main: clusters obtained by merging such sequences are often of low qual-
ity and are not semantically meaningful. In contrast to single-link clus-
tering, complete-link clustering is sensitive to outliers, while average-link
clustering is a compromise between the two [120].

QDC uses an improved similarity measure for merging that limits clus-
ter chaining significantly, but does not stop it entirely. To solve the cluster
chain problem (without the alternate limitations of average-link or complete-
link clustering) QDC makes a second pass over the merged clusters and
splits those that have been joined inappropriately.

5.2.4 Partitional Clustering

Partitional clustering maximizes an objective function by iteratively relo-
cating points between clusters [14]. There are several common approaches
to partitional clustering. The probabilistic approach assumes the data was
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sampled from a mixture model of several probability distributions. The
log likelihood of the data provides the objective function for a two-step it-
erative EM (expectation-maximization) algorithm [14, 16]. The k-Medoids
approach represents each cluster by one of its points and typical objective
functions measure the similarity using the distance between a point and
the medoid [14, 211, 167]. The k-Means approach [14, 31] represents each
cluster by a centroid, which is the mean of the document vectors assigned
to that cluster.

k-Means starts with an arbitrary assignment of documents to k clusters,
then iteratively shifts documents to the nearest cluster. The algorithm it-
erates until convergence (typically when there were no changes in the last
iteration) using a two-step process:

1. calculate the vector-space centroid of each cluster using its current
members

2. assign each document to the cluster with the nearest centroid

Partitional clustering algorithms find a local optima based on the initial
seed (the initial assignment of documents to clusters), which makes the
selection of this seed critical. A commonly used and simple approach is to
randomly assign documents to clusters. There are many alternative seed
selections methods [120] that include

1. creating several random seeds and running the algorithm on each
seed, then choose the clustering that minimizes the objective func-
tion

2. excluding outliers (documents with low similarity to all other docu-
ments) from the seed

3. creating the seed using another clustering algorithm such as hierar-
chical clustering
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Both k-Means and hierarchical agglomerative clustering use hard as-
signments where each document belongs to exactly one cluster. Docu-
ments often reflect multiple concepts and ought to belong in multiple clus-
ters; using hard assignment limits the potential performance by needlessly
restricting the clusterings an algorithm can construct. An alternative is
soft assignment, where each document has fractional membership to each
cluster and may therefore exist in multiple clusters. Fuzzy c-Means is an
adaptation of k-Means that uses soft assignment. Query Directed Cluster-
ing, like most web page clustering algorithms, uses soft assignment.

5.2.5 Web Page Clustering Algorithms

Web pages are a rich clustering domain with many sources of insight be-
yond the pages themselves. Many algorithms build on the standard meth-
ods by using web or document specific characteristics to assist cluster-
ing: Suffix Tree Clustering (STC) [201] and Lingo [137, 136] use phrases.
Other algorithms exploit further sources of information including hyper-
links [188, 123], web logs [171], the structure of pages [8], the colours used
on pages [132], and the URL [132]. Query Directed Clustering exploits the
query and term relationships learned from global document analysis to
aid clustering.

A wide variety of algorithms have been considered and applied to
web clustering, with the most successful being Suffix Tree Clustering and
Lingo. Web page clustering algorithms include

• Combining link analysis and contents [188, 86, 122, 197, 191, 123, 34,
180, 87]

• Density based [171]

• Divide and merge clustering — combining divisive and agglomera-
tive hierarchical clustering approaches [33]

• Grouper [202]
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• Hierarchical agglomerative [166, 118, 168, 77]

• Hierarchical clustering [64, 154, 72, 191, 36, 37, 34, 205, 87]

• Hierarchical divisive [166, 86]

• Hierarchical monothetic clustering [105]

• Hierarchical fuzzy c-means clustering [124]

• Highly connected subgraphs [79]

• Lingo: phrase discovery using modified version of SHOC and sin-
gular value decomposition [136, 137, 135, 44]

• k-Means [166, 155, 168, 190]

• Nearest Neighbour [198, 77]

• Mapuccino [15]

• Robust fuzzy k-medoids [174]

• Scatter Gather [15]

• SHOC [205, 15]

• Similarity based graph partitioning [168]

• Suffix Tree Clustering: phrase based single link hierarchical agglom-
erative method [203, 174, 164, 15, 28, 201]

• Supervised clustering [62]

• Unsupervised Bayes [168]

• Vivisimo [15]
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5.2.6 Suffix Tree Clustering

Suffix Tree Clustering (STC) [203] is a four-stage algorithm. The first stage
prepares the pages for clustering. This stage splits the pages into phrases
using standard sentence terminators such as full stops or exclamation points,
and the location of surrounding HTML tags. It then cleans and stems the
pages in the standard manner described in section 2.4.3.

The second stage efficiently constructs base clusters using a suffix tree.
Base clusters are sets of documents that contain at least one phrase in com-
mon. The algorithm constructs a suffix tree using the phrases in the docu-
ments (an example is shown in figure 5.2). Then it extracts the base clusters
from the suffix tree. Each non-root node in the suffix tree corresponds to a
phrase, and each base cluster corresponds to a node on the suffix tree. For
example, node A in figure 1 is the base cluster that represents documents
containing the common phrase “the dog” and this base cluster contains
documents 1 and 2.

Documents
1) the dog the cat
2) the dog ran
3) the cat ran

dogthe rancat

the
 ca

t ran

the
 ca

t ran ran

2,3

1 2

1 2 3

1dog cat
ran

3

1

Suffix Tree

A

Figure 5.2: A suffix tree for three documents

The base cluster score combines the length of the common phrase and
the number of documents in the base cluster. The score is defined as s =

|D| · f(|P |) where |D| is the number of documents in the base cluster, |P |
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is the length of the common phrase, and f(|P |) is defined as follows:

f(|P |) =


0.5 if |P | = 1

|P | if 1 < |P | ≤ 5

6 if |P | > 5

The third stage combines base clusters to form the output clusters. STC
combines the base clusters by clustering them using a single-link cluster-
ing algorithm that stops when the similarity between base clusters is less
than a constant threshold (the similarity constant). STC defines the simi-
larity between base clusters as follows:

similarity(b1, b2) =
|b1 ∩ b2|

max(|b1|, |b2|)

where b1 and b2 are sets containing the documents in a base cluster. Each
cluster found using this algorithm is a set of base clusters. For each set,
STC constructs an output cluster that contains the documents in the union
of the set’s base clusters.

The fourth stage scores each output cluster and shows the highest scor-
ing clusters to the user. The score of an output cluster is equal to the sum
of its base cluster scores as shown in figure 5.3.

Researchers have made many improvements to STC. The suffix tree
structure can be replaced by a suffix array [116], which is similar to a suf-
fix tree and performs the same function, but has significantly lower mem-
ory requirements. SHOC (Semantic, Hierarchical, Online Clustering) [205]
extends STC to handle oriental languages such as Chinese.

My earlier work on Extended Suffix Tree Clustering (ESTC) [44] sig-
nificantly improved the clustering quality of STC and made the algorithm
significantly more stable to variation of the similarity constant. STC scores
clusters for some topics much higher than other clusters, even when the
underlying cluster quality is identical. This is because some topics may
have a disproportionately large number of phrases and therefore have a
large number of overlapping base clusters as shown in figure 5.4. ESTC
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Figure 5.3: STC scores output clusters by combining the scores of base clusters

improved the scoring function of STC to eliminate the over-counting of
overlapping base clusters. ESTC also improved the clustering coverage by
using a particularly efficient hill climbing search with look-ahead to select
clusters that cover as many documents as possible.

5.2.7 Google Distance

One way of improving web page clustering algorithms is to exploit the tex-
tual properties of web pages to measure document similarity and cluster
coherence. The semantic relationships between words, for example, syn-
onyms, hyponyms, meronyms, etc., is very useful information for such a
measure [39]. WordNet [39] is a lexical reference system and is one source
of such information. However, the data in WordNet is incomplete, partic-
ularly for commercial, technical, and popular culture word usage.

An alternate source, although less accurate and less informative, is to
use global document analysis and term co-occurrence statistics to iden-
tify whether terms are related or unrelated. It is possible to compute ap-
proximate measures of term co-occurrence using the Web Frequency (the
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Figure 5.4: Some topics will have many overlapping base clusters because the

distribution of phrases between topics is not uniform, but is dependent on the

number of pages related to that topic in the result set

number of pages retrieved by a web search) of the terms under compari-
son and by a multi-term search for their conjunction. For example, com-
puting the term co-occurrence between the terms Ford and car would in-
volve the number of results for the queries “Ford”, “car”, and “Ford car”.
Google Distance [39] and the Rough Set based Graded Thesaurus [41] are
two techniques that use these statistics to determine term similarity and
both have been shown to be effective on various tasks, such as hierarchi-
cal word clustering [39] and query expansion [41].

QDC uses term relationships to provide a dramatic improvement in
clustering performance. Specifically, QDC uses the original normalized
Google distance (NGD) [39]:

NGD(i, j) =
max(ln(f(i)), ln(f(j)))− ln(f(i ∧ j))

ln(M)−max(ln(f(i)), ln(f(j)))

where i and j are terms, f(t) is the Web Frequency of some term or terms t,
and M is the total number of pages. Note, after the development of QDC
[46], researchers revised NGD [40] to use the minimum, rather than the
maximum in the denominator:

NGD′(i, j) =
max(ln(f(i)), ln(f(j)))− ln(f(i ∧ j))

ln(M)−min(ln(f(i)), ln(f(j)))
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In practice, the original NGD provides a greater spread of values and
works well with QDC. QDC’s parameters could be re-tuned for the revised
NGD, however, performance is unlikely to improve significantly. The re-
mainder of this thesis exclusively uses the original NGD.

5.3 Analysis of Web Page Clustering Algorithms

This section decomposes the general model used for clustering web pages
and analyzes the cause behind the failures of current approaches. The
design of Query Directed Clustering uses this model and addresses each
cause of failure.

5.3.1 General Model for Clustering Web Pages

The diversity of web page clustering algorithms is large, but all follow
roughly the same model. My 7 stage model is shown in figure 5.5, and,
like almost all algorithms, starts by pre-processing the pages before clus-
tering. This involves removing stop words, HTML tags, punctuation, and
applying stemming. The result of the pre-processing stage is an associa-
tion between pages and terms, which, depending on the algorithm, might
be words or phrases.

After pre-processing, clustering algorithms diverge somewhat, but largely
follow the same process. For example, Suffix Tree Clustering [201], Link-
based Clustering [190], and Lingo [137] map quite cleanly onto the model
as shown in figures 5.6, 5.7, and 5.8 respectively. My new algorithm, Query
Directed Clustering, follows this model almost exactly as shown in figure
5.9.

The first stage identifies the topics: an imprecise description of a su-
perset of the final clusters. The description can be either concrete (an
extension of a cluster: a set of documents) or abstract (an intension of
a cluster: a set of terms describing the cluster). Standard clustering al-
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Figure 5.5: General model for web page clustering algorithms

gorithms typically skip this step and go straight to constructing the final
clusters. However, many good web page clustering algorithms first re-
strict the set of possible clusters. Suffix Tree Clustering and Link-based
Clustering achieve this by building base clusters, which are concrete de-
scriptions, while Lingo chooses the final names of the clusters (usually
stage four), which are abstract descriptions.

The second stage constructs possible clusters: finds the extensions for
a superset of the final clusters. All clustering algorithms do this, although
it might involve multiple sub-stages. For example, Query Directed Clus-
tering first merges the base clusters and then splits them.

The third stage selects the set of output clusters to show the user. Stan-
dard clustering algorithms typically skip this stage and retain all the out-
put clusters from stage two, as do other algorithms like Link-based Clus-
tering.
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Figure 5.6: Suffix Tree Clustering fits the general model when some steps are left

out

Figure 5.7: Link-based Clustering fits the general model when some steps are

skipped
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Figure 5.8: Lingo fits the general model when some steps are re-ordered

Figure 5.9: Query Directed Clustering fits the general model
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The fourth stage names the output clusters. All web page clustering
algorithms name the clusters to allow users to identify relevant clusters.
Most algorithms use a simple naming convention, for example, STC uses
the union of the phrases on the base clusters that form an output cluster.
Other algorithms like Lingo use a complex naming scheme and may name
the output clusters as part of an earlier stage, for example, Lingo names
the output clusters as part of identifying the topics in the first stage.

The fifth stage involves cleaning the output clusters (removing irrele-
vant pages or outliers). Most algorithms skip this stage and instead as-
sume all pages in the output cluster are relevant. Like naming, algorithms
can clean clusters during an earlier stage. For example, Link-based Clus-
tering identifies outliers during pre-processing. This has the benefit of
excluding the outliers from the clustering process and therefore avoids
biasing the constructed clusters. However, when performed later in the
process, cleaning is more accurate, because the final clusters can be ana-
lyzed when determining relevancy and finding outliers. For this reason,
Query Directed Clustering performs cleaning near the end of the process.

The sixth stage involves re-ordering the pages within each cluster, ac-
cording to their relevancy to the cluster. Most algorithms skip this step
and instead use the default behaviour: maintain the original ordering from
the search results. Query Directed Clustering reuses its measure of clus-
ter relevancy from the fifth stage to re-order the pages and improve the
relevancy of the pages the user is most likely to view.

Deviations from the model are relatively minor: skipping stages (e.g.
most direct implementations of standard clustering algorithms, Suffix Tree
Clustering, Lingo, and Link-based Clustering), splitting stages(e.g. Lingo,
Link-based Clustering, and Query Directed Clustering), and rearranging
stages (e.g. Lingo and Link-based Clustering). Skipping occurs due to the
use of default behaviour, for example, maintaining the search result order
of pages within the clusters as opposed to reordering the pages. Splitting
occurs when algorithms invoke multiple discrete steps within one stage.
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Rearrangements typically involve shifting later stages to occur earlier and
most commonly involve stages 4 and 5, naming clusters and cleaning clus-
ters.

5.3.2 Problem 1: Low quality clusters

While Suffix Tree Clustering (STC), Lingo, and other algorithms find many
good clusters, they also find many clusters that are ambiguous, overly
specific, low value, or incomprehensible (semantically meaningless). For
example, consider the following sample of clusters produced by two of the
best clustering algorithms (ESTC and Lingo) for the query “Jaguar”.

1. Mac OS Jaguar - Good Cluster

2. Cat the Jaguar - Good Cluster

3. Safety Information - Ambiguous (Car Safety, Mac OS Safety, Cat Safety)

4. Locate a Used Car - Overly Specific

5. Home Page - Low Value

6. Official Web - Low Value

7. Pictures - Low Value

8. Online - Incomprehensible

9. System - Incomprehensible

Low value, incomprehensible, and semantically meaningless clusters
occur because from a textual perspective the algorithms use only local5

document properties to form clusters. While local term frequencies are
informative, in isolation they are an inadequate guide for the clustering
process, because the semantic content of terms within a result set is not

5from pages within the result set
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homogeneous. For example, while “Home Page”, “Official Web”, “Pic-
tures”, “Online”, and “System” might occur frequently in the result set of
“Jaguar”, they also occur frequently on the web and therefore carry less
semantic weight than other frequently occurring terms like “Mac OS” and
“Used Car”.

The problem arises as terms with low semantic weight form relation-
ships between otherwise unrelated documents, which leads to the con-
struction of ambiguous clusters. While the problem exists in many algo-
rithms, including Lingo, the problem is most evident in algorithms like
STC that construct output clusters from a union of base clusters. Since
base clusters constructed from terms with low semantic weight are am-
biguous, the output clusters containing them will ultimately be ambigu-
ous too. The solution is to ignore terms with low semantic weight, because
this avoids ambiguity inducing relationships from contaminating the clus-
tering process. Query Directed Clustering achieves this by pruning such
terms during the first stage of the clustering process.

Search engines use inverse document frequency to weight the seman-
tic importance of different query terms. Even this simple global informa-
tion could improve the clustering. For example, one extension improves
STC [203] by incorporating inverse document frequency into the cluster
score and Lingo uses inverse document frequency when identifying top-
ics. However, global document analysis such as Google Distance and
other co-occurrence based measures can produce even richer information
that could further improve the clustering. Query Directed Clustering uses
richer global information to improve several stages of the clustering pro-
cess and to reduce significantly the number of low quality output clusters.

5.3.3 Problem 2: Low coverage clusters

Web Page Clustering algorithms face a tradeoff between quality and cover-
age. Constructing high quality clusters is relatively easy: most terms with
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high semantic weight lead to pure non-ambiguous high-quality clusters.6

However, such clusters typically have low coverage of the topic they rep-
resent. The solution is to combine the relationships inferred from multiple
terms to form larger, high coverage clusters. Unfortunately, algorithms
often combine unrelated terms to produce low quality clusters.

This problem exists in many algorithms, including Lingo, which hides
term combination as part of Singular Value Decomposition, and is most
evident in algorithms like STC, that explicitly merge base clusters. STC
addresses low coverage clusters by merging base clusters using a single-
link clustering algorithm [92] with cluster overlap as the similarity mea-
sure. The problem is that cluster overlap is a poor measure of semantic
relatedness and it may merge semantically unrelated clusters, which low-
ers cluster quality, unless the overlap threshold is set very high. However,
this leaves many related clusters separate, which limits cluster coverage.

Similar to the solution for low quality clusters, the solution for low
coverage clusters is a better understanding of semantics and again the
source of that understanding is global document analysis. With an im-
proved measure of semantic relatedness, the merging threshold can simul-
taneously be lower for related clusters and higher for unrelated clusters,
which improves both quality and coverage. QDC measures the semantic
similarity of cluster intensions (cluster descriptions) in addition to using
cluster overlap to provide a more effective similarity measure for merging
clusters that boosts both cluster quality and coverage.

5.3.4 Problem 3: Poor output clusters

Algorithms must select some number of clusters to show the user. The
number of clusters shown to the user should be at least the number of
query interpretations (ideally exactly equal), and not too large for the user
to comprehend (no more than 10). Many algorithms, like k-Means, always

6where the cluster contains exactly the pages that contain the term
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construct a fixed number of clusters. Others, like STC, construct thousands
of clusters (when using full text as opposed to snippets) and then select the
best subset of fixed size.

Presenting a fixed number of clusters prevents the user being over-
whelmed with too many clusters. However, it fails to simplify their de-
cision process when the number of query interpretations is less than the
number of clusters. At best, the additional clusters are semantically rele-
vant (which is not usually the case) and represent sub-topics of the main
query interpretations. For example, reconsidering the “Jaguar” query: “Car”
represents a main query interpretation, while “Locate a Used Car” and
“Jaguar Auto Parts” represent sub-topics of the broader “Car” topic. The
problem with showing sub-topics is the increased probability of multiple
relevant choices, which hinders the user’s decision. Even worse, algo-
rithms often select sub-topics in preference to those representing the main
query interpretations.

One solution is a hierarchical display of clusters [68, 105]. However,
hierarchical algorithms still face the issue of correctly constructing the
hierarchy. Hierarchical algorithms can incorrectly promote sub-topics to
top-level topics and miss entire top-level topics. One approach for gen-
erating a hierarchical clustering is the recursive application of the same
clustering algorithm. If the algorithm finds clusters representing exactly
the top-level topics, this will generate a good hierarchical clustering. Un-
fortunately, even when the original query was an easy ambiguous query,
there is no guarantee that the sub-topics of a top-level cluster have distinct
vocabulary and therefore further sub-clustering may fail.

QDC builds the top-level of a hierarchical clustering by iteratively se-
lecting the highest quality cluster that improves coverage, ensuring the
number of clusters matches the number of topics. QDC measures qual-
ity using the cluster’s semantic distance from the query. The semantic
distance is designed to be negative for sub-topics, which ensures only top-
level topics are selected. If users need further refinement of a cluster’s
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results, it is treated as a new and separate refinement task, and solved
using the most appropriate method (which might be QDC or one of the
methods described later in this thesis).

5.3.5 Problem 4: Irrelevant page ordering within clusters

After selecting a cluster, the user sees a result set consisting of the cluster’s
pages. Providing the most relevant pages earlier in the results can reduce
the time users spend searching [10]. Most clustering algorithms order the
pages in the clusters by their position in the search results [32]. Such an or-
dering fails to use the additional information about the user’s search goal,
provided by the user selecting the cluster, so the most relevant pages may
not be shown first. Query Directed Clustering orders the pages within
each cluster according to their relevance to the cluster.

5.4 Algorithm - QDC

The next few sections describe Query Directed Clustering (QDC), a new
web page clustering algorithm with five key innovations. The algorithm
is explained sequentially in five parts, which cover the stages of the algo-
rithm outlined in figure 5.9. The pre-processing in QDC is standard and is
not described further, section 5.5 covers topic identification, together sec-
tions 5.6 and 5.7 cover the construction of clusters, section 5.8 covers the
selection of clusters, and finally section 5.9 covers the naming, cleaning,
and page reordering of clusters.

Base Cluster Identification (section 5.5) describes QDC’s query guided
quality measure and explains how it improves cluster quality by reducing
cluster contamination. Cluster Merging (section 5.6) then explains how
QDC uses the semantic relationship between cluster intensions to improve
cluster coverage without impeding cluster quality. Cluster Splitting (sec-
tion 5.7) then explains how QDC improves cluster quality by resolving the
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single-link clustering problem of cluster chaining (cluster drift) using a hi-
erarchical agglomerative clustering algorithm. Cluster Selection (section
5.8) then explains how QDC uses the relationship of terms to the query to
gauge the specificity of clusters and thus select the highest quality clusters
that both maximize coverage and represent the top-level clusters of a hi-
erarchical clustering. Finally, Cluster Naming, Cleaning, and Reordering
(section 5.9) explains how QDC improves clusters by ranking the pages by
relevance to the cluster.

5.5 Base Cluster Identification

QDC identifies the search result topics by establishing a set of unambigu-
ous base relationships between the pages. QDC represents this set of rela-
tionships by a set of base clusters, which it constructs after standard page
pre-processing.

5.5.1 Initial Base Clusters

Initially, QDC finds a superset of the final base clusters. A base cluster (b) is
described by a single word7 (D(b)) and consists of all the pages containing
that word. Equivalently, base clusters are single word search refinements
based on the current search results. QDC constructs a collection of base
clusters, one for every word that is in at least 4% of the pages.

In general, lowering the threshold will increase clustering performance
at the cost of cpu time. However, if the smallest base clusters are too small,
they introduce noise and reduce clustering performance. 4% provided
good performance during my experiments, which clustered 200 pages; 200

7As shown by STC and Lingo, using phrases might improve performance, however
QDC aims to establish the significance of exploiting the query and global document anal-
ysis independently of phrases.
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pages is typical of recent web page clustering methods and proved suffi-
cient8 for covering the range of topics in the result set.

Many of the initial base clusters are useless and only serve to contami-
nate the final clusters as discussed in section 5.3.2. Removing these useless
clusters would improve the clustering, but selecting the right clusters to
prune requires some guide to cluster quality.

5.5.2 Estimating Cluster Quality using Query Distance

The user’s query is the best, and often the only, specification of the in-
formation desired by the user. QDC uses the relationship between query
terms and cluster descriptions as one part of a cluster quality guide. The
Query Distance (QD(b)) of each base cluster is the minimum of the NGD9

between the word specifying the base cluster and any query term.

QD(b) = min
term∈query

NGD(D(b), term)

Query Distance is a useful guide to cluster quality because it distin-
guishes terms according to their ability to resolve the ambiguity in the
query. Words with a high query distance tend to be semantically unrelated
to all the query terms, making them unlikely to be related to any query in-
terpretation and therefore unlikely to contribute to the disambiguation of
interpretations. Whereas words with a low query distance tend to be very
specific, making them more likely to be related to a single query interpre-
tation and therefore better at disambiguating the different query interpre-
tations. Figure 5.10 shows the Query Distance for various terms relative
to the query “Jaguar”. As expected, terms that relate closely to a single
query interpretation (Toyota, Ford, Seat, Tiger, Vehicle) have a small query
distance, while terms that are semantically unrelated to all interpretations

8My experiments found that performance was relatively poor on 50 pages, acceptable
on 100 pages, and good on 200 pages and above.

9Using Normalized Google Distance (NGD) as defined in section 5.2.7.
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(Professional, Technology, Location, Buy, Homepage) have a large query
distance.

Figure 5.10: The query distance for various terms relative to the query “Jaguar”

5.5.3 Pruning Ambiguous Base Clusters

Ambiguous clusters are often of poor quality because they combine mul-
tiple distinct ideas of which only one is normally of interest to a given
user. QDC removes these low quality clusters by removing clusters whose
Query Distance is too large. The experiments use cutoffs of 1.5 when using
full text data and 2.5 when using snippet data.10 This removes most low

10The higher cutoff is necessary because snippets contain dramatically less content than
full text.
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quality clusters, but if the cutoff is too low (for example, 1.0), high quality
clusters may be removed as well (for example, Mac, Cat, and Car); using
a higher cutoff removes fewer clusters.

After pruning using Query Distance, there are still many low quality
clusters (for example, Symbol, Weight, and Distribution). The dilemma is
that low quality clusters persist because the cutoff is too high, but lower-
ing the cutoff would remove high quality clusters. The solution is to com-
bine local information (document frequency) with the global information
(Query Distance) used already.

The distribution of web pages tends to follow the frequency of user
interest in the page topics. Therefore, larger clusters have a greater proba-
bility of being useful refinements and cluster size is an indication of cluster
quality. QDC removes the worst clusters according to a measure (baseQuality(b))
proportional to cluster size11 and inversely proportional to Query Dis-
tance.

baseQuality(b) =
|b|

QD(b)

This measure of base cluster quality is very effective as shown in figure
5.11.12

The number of clusters kept is proportional (1:1) to the total number
of pages being clustered (200 during this chapter’s experiments). Keeping
fewer clusters will increase algorithm speed but lower clustering perfor-
mance; however, if too many clusters are kept, low quality clusters are not
pruned and may contaminate the merging process.

Pruning reduces the number of clusters by an order of magnitude (10 –
25 fold on full text data), which dramatically reduces the cpu time cost rel-
ative to other algorithms that generate base clusters like Suffix Tree Clus-

11the document frequency of the cluster’s description amongst the pages to be clus-
tered

12Figures 5.10 and 5.11 show different subsets of the full set of base clusters. Specifi-
cally, figure 5.11 includes Symbol, Weight, and Distribution even though these were not
shown in figure 5.10.
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Figure 5.11: Base Cluster quality is estimated using a combination of Query

Distance (QD) and cluster size (|b|)

tering. Removing this many clusters would normally have a negative ef-
fect on clustering performance, but because the query directed heuristics
give a reliable guide to cluster quality, the low quality clusters that would
later contaminate the merging process are removed, and the performance
actually improves.

5.6 Cluster Merging

QDC constructs larger clusters with improved coverage by merging clus-
ters together using a single-link clustering algorithm. Each cluster (c) is
constructed from a set of base clusters (base(c)), and the description of a
cluster (D(c)) is the term that describes the cluster’s largest base cluster.

5.6.1 Base Cluster Similarity

Previous methods often merge unrelated clusters, which decreases cluster
quality by introducing irrelevant pages as discussed in section 5.3.3. QDC
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addresses this by using an improved measure of base cluster similarity
that considers both the cluster’s contents (page members) and descrip-
tions.

The problem is normally exacerbated when using single-link cluster-
ing by cluster chaining (cluster drift): clusters that are closely related to
one of the unrelated clusters but not the others are often merged in too,
bringing further irrelevant pages with them. While the improved similar-
ity measure helps resolve cluster chaining, it does not solve the problem
completely; for that, QDC splits clusters as described in section 5.7.

QDC defines two clusters to be sufficiently similar only if both the clus-
ter contents and cluster descriptions are sufficiently similar. Requiring the
cluster descriptions to match in addition to the contents dramatically re-
duces the merging of semantically unrelated clusters and increases cluster
quality. Additionally, by using two independent conditions, the thresh-
olds for both can be significantly reduced, which allows more semantically
related clusters to merge (increasing cluster coverage), while not hurting
cluster quality. The thresholds are independent because one is based on
local information (cluster contents) and the other is based on global infor-
mation (cluster descriptions).

The cluster contents are sufficiently similar if enough of the pages in
one cluster are also in the other cluster (i.e., if there is enough overlap
between the clusters):

|c1 ∩ c2|
min(|c1|, |c2|)

> γ

The cluster descriptions are sufficiently similar if the pair of cluster
descriptions occur together on the web significantly more frequently than
would be expected if the pair were unrelated (i.e., if their appearances were



5.6. CLUSTER MERGING 219

independent):

P (d1 ∧ d2) > δP (d1)P (d2)

≡ f(d1∧d2)
M

> δ f(d1)
M

f(d2)
M

≡ Mf(d1∧d2)
f(d1)f(d2)

> δ

where d1 and d2 are the cluster descriptions, and f(t) and M are as per
NGD in section 5.2.7.

My experiments use a cluster content threshold of γ = 0.6 and a cluster
description threshold of δ = 4, which means that only clusters that share
at least 60% of their documents and whose descriptive terms co-occur on
at least four times more web pages than they would if they were inde-
pendent. Decreasing either the cluster content or the cluster description
thresholds will increase cluster coverage at the cost of greater cluster over-
lap.

5.6.2 Merging Clusters with Single-link Clustering

Initially there is a singleton cluster for each base cluster. QDC merges clus-
ters using single-link clustering over a relatedness graph. Single-link clus-
tering merges all clusters that are part of the same connected component
on the graph. The relatedness graph has the clusters as vertices and has an
edge between any two clusters whose content similarity and description
similarity exceed the relevant thresholds.

While the set of base clusters defines the cluster, the base clusters may
contain outliers: pages that contain the base cluster’s term, but which do
not reflect the topic of the merged cluster. QDC removes outliers, by selec-
tively including pages from the base clusters in the final cluster. A cluster
only includes a page if it is present in enough of the cluster’s base clusters.
The more base clusters containing a page, the greater the evidence that the
page is not an outlier. However, the increase in evidence with each addi-
tional base cluster decreases. Therefore, the threshold should be a function
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with a monotonically decreasing first derivative; QDC uses the logarithm.
The cluster’s pages comprise pages that are in at least log2(|base(c)|+ 1) of
the cluster’s base clusters. As shown in figure 5.12, this means pages must
be in at least 2 base clusters when the cluster has 3 base clusters, 4 when
the cluster has 15, 6 when the cluster has 63, etc.

Figure 5.12: The threshold for cluster page membership depends on the number

of base clusters

5.7 Cluster Splitting

QDC further improves the construction of clusters by splitting ambigu-
ous clusters that cover multiple topics into their constituent parts using a
hierarchical agglomerative algorithm.
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5.7.1 Ambiguity of Maximally Merged Clusters

After merging, the clusters are maximal, in that each cluster now contains
at least all the base clusters that relate to one idea; single-link clustering
assures this because it merges all related clusters. However, single-link
clustering, even with the improved similarity function, can produce unfo-
cused/ambiguous clusters containing multiple topics and irrelevant base
clusters due to cluster chaining (cluster drift). Such clusters need to be
split.

Ideally, the merging algorithm would prevent the formation of these
clusters; however, these restrictions often prevent desirable merging as
well. Interestingly, it is easier to split compound clusters than to prevent
their formation in the first place because the splitting can take into account
the final cluster, whereas the merging process cannot. Researchers [166]
observed a similar phenomenon where k-Means’ non-committal strategy
could compensate for early mistakes caused by an unreliable measure of
nearest neighbours better than hierarchical agglomerative clustering, be-
cause k-Means could observe the overall clustering.

5.7.2 Finding Sub-clusters using Connectivity

During the merging process, the single-link clustering algorithm constructs
a graph of the relationships between each cluster’s constituent base clus-
ters. The splitting algorithm can exploit this graph to identify groups of
base clusters (sub-graphs) that probably represent different topics.

The relatedness graph connects base clusters that are semantically sim-
ilar and their structure can vary dramatically. However, all relatedness
graphs share the primitive sub-structures shown in figure 5.13: densely
connected regions, sparsely connected regions, and long chains. These
common sub-structures simplify the analysis.

The assumption underlying the merging of base clusters is that seman-
tically similar terms represent the same topic. While generally this is a
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Figure 5.13: Single-link clustering creates a broad spectrum of merged clusters

consisting three kinds of primitive sub-structure

reasonable assumption, it can be wrong, because individual terms can be
polysemous (have multiple meanings). Additionally, the measure of se-
mantic similarity may make mistakes. Identifying these problems during
merging is difficult. However, since mostly the assumption is valid, when
problematic relationships occur, they appear as anomalies in the related-
ness graph.

Densely connected regions are most likely to represent a single topic,
because they occur when many base clusters are mutually semantically
similar. Since problematic relationships are rare, it is unlikely that all those
relationships were wrong.

The most obvious anomaly is the long chain where a single string of
clusters is the only connection between two groups of clusters. Long chains
occur when a series of clusters are semantically similar to their neighbours,
but not to clusters further away in the chain. While it is reasonable to
assume two directly connected clusters represent the same topic, this as-
sumption grows less reasonable as the number of intermediaries grows,
because it requires that all intermediaries have failed to meet the related-
ness criteria during merging (which is unlikely if they are truly related),
otherwise there would be a shorter path between them. Therefore, the



5.7. CLUSTER SPLITTING 223

probability of relatedness between groups of clusters connected by long
chains is inversely proportional to the length of the chain.

Between these two extremes lie the sparsely connected regions, which
can contain anomalies that are difficult to identify. For example, when
two densely connected regions are sparsely connected to each other it is
most likely they represent different topics, since the few connections be-
tween them are more likely to be anomalous than is the absence of the
many expected connections if they represent the same topic. In contrast
to long chains that are readily identified by a series of vertices of low de-
gree, anomalous connections in sparsely connected regions are difficult
to identify because the relevant edges and vertices are indistinguishable
at the micro-level (individual edges and vertices). Identifying anomalous
connections in sparsely connected regions requires analysis at the macro-
level (groups of edges and vertices), but enumerating all groups is com-
putationally impractical because the cost is exponential in the number of
vertices. QDC uses a greedy approach with a good heuristic, so that the
anomalous connections are identified, but only the relevant groups are
considered.

In general, densely connected regions are more likely to represent a
single topic than sparsely connected regions, and regions connected by
long chains are the least likely to represent a single topic. This makes
the path length and the number of independent paths between regions
important in measuring how likely they are to represent the same topic.
Given two regions with an equal number of clusters, the denser region will
typically have both a shorter path length between clusters and a greater
number of independent paths. Two regions connected by a long chain
will have both a long path length and only one path. These properties are
the basis of the similarity method QDC uses to split clusters.
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5.7.3 Splitting Clusters with Hierarchical Agglomerative

Clustering

QDC uses a hierarchical agglomerative clustering algorithm to identify
the sub-cluster structure within each cluster. The algorithm uses a simi-
larity measure based on the relatedness graph to build a dendrogram for
each cluster starting from the base clusters in the cluster. QDC splits each
cluster by cutting its dendrogram at an appropriate point — when the sim-
ilarity between the closest pair of sub-clusters falls below a threshold (the
experiments use -2).

A good similarity measure should ensure sub-graphs that represent
the same topic have high similarity and vice-versa. Namely, the similarity
measure should weight strongly the number of short paths between sub-
graphs and discount regions separated by long chains and those that are
sparsely connected.

QDC uses a similarity measure with three components: the number of
length one paths between the two sub-clusters in the relatedness graph
(onelinks), the number of length two paths (twolinks), and the average
distance from base clusters in one sub-cluster to base clusters in the other
sub-cluster (avgdist).

sim(c1, c2) = onelinks(c1, c2) + 0.5 twolinks(c1, c2)− avgdist(c1, c2)

avgdist(c1, c2) =

∑
b1∈base(c1)

∑
b2∈base(c2)len(b1, b2)

|base(c1)||base(c2)|
where len(b1, b2) is the length of the shortest path between two base clus-
ters in the relatedness graph.

The first two components (onelinks and twolinks) capture the impor-
tance of short paths and their relative importance is incorporated by dis-
counting twolinks. While larger paths could be similarly incorporated,
their significance diminishes fast — by analogy, consider a friendship net-
work, while you may know the friends of your friends (twolinks), it is
very unlikely that you know any of their friends (threelinks). However, it
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is very important to incorporate at least twolinks, because it captures the
notion of connectivity. This enables densely connected regions to be dis-
tinguished from sparsely connected regions, even at the lowest levels of
the dendrogram when computing the similarity between individual base
clusters.

The third component (avgdist) discounts sparsely connected regions
and those separated by long chains. One interpretation is that avgdist cor-
responds to the distance between the virtual13 centers of each cluster.

The final part of the algorithm is the splitting threshold. The thresh-
old of -2 means that any groups of base clusters that are not tightly in-
terconnected with each other will be split. Using a higher threshold will
lower the split point and increase the splitting frequency. Generally, the
similarity between two sub-clusters will exceed a threshold of −k when
the distance between their virtual centers is less than 2k. In the specific
case that there is an articulation node (whose removal would disconnect
the two sub-clusters), the distance between the virtual centers of two sub-
clusters c1 and c2 is ampl(c1) + ampl(c2), where ampl(c) is the average of
the minimum path lengths from the nodes in c to the articulation node. In
general, the distance depends on the location of the connections between
the sub-clusters and the internal structure of the sub-clusters.

5.7.4 Worked Examples

This section applies the splitting algorithm to two different clusters in fig-
ures 5.14 (cluster 1) and 5.16 (cluster 2). When the algorithm is applied,
ties are broken by merging the two clusters that contain the lowest num-
bered clusters. The resulting dendrograms and application of the thresh-
old cutting is shown in figures 5.15 and 5.17 respectively. The merge or-
der and maximum similarity at each step are shown in tables 5.2 and 5.3
respectively. Cluster 1 shows that the algorithm correctly splits clusters

13virtual because it may not correspond to a specific base cluster
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Table 5.2: Merge order and maximum similarity for cluster 1

Clusters Merged Similarity
1 4 1
3 5 1
8 10 1
12 14 1
1,4 6 0.5
12,14 13 0.5
15 16 0.5
2 3,5 0
8,10 9 0
8,9,10 11 -0.333
12,13,14 15,16 -0.333
1,4,6 2,3,5 -0.5
7 8,9,10,11 -0.7
7,8,9,10,11 12,13,14,15,16 -2.2
1,2,3,4,5,6 7,8,9,10,11,12,13,14,15,16 -3.866

separated by isthmi and cluster 2 shows that the algorithm correctly splits
densely connected clusters that are sparsely connected.

5.8 Cluster Selection

At this stage, QDC has a small set of coherent clusters. However, there
will still be more clusters than can be presented to the user. QDC needs
to select the best subset of the clusters to present to the user. Ideally, these
clusters should be high quality clusters that represent exactly the top-level
clusters of a hierarchical clustering as discussed in section 5.3.4.

Section 5.2.6 discussed ESTC, a clustering algorithm developed dur-
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Figure 5.14: Merged cluster 1 containing three sub-clusters separated by isthmi

Figure 5.15: Dendrogram showing process of splitting cluster 1 into three

sub-clusters



228 CHAPTER 5. QUERY DIRECTED CLUSTERING

Figure 5.16: Merged cluster 2 containing two multiply connected sub-clusters

Figure 5.17: Dendrogram showing process of splitting cluster 2 into two

sub-clusters
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Table 5.3: Merge order and maximum similarity for cluster 2

Clusters Merged Similarity
1 5 1.5
1,5 7 1
10 13 1
12 14 1
2 3 0.5
10,13 11 0.5
1,5,7 4 0
6 8 0.5
9 12,14 0
10,11,13 15 0
1,4,5,7 2,3 -0.6
9,12,14 10,11,13,15 -0.7
1,2,3,4,5,7 6,8 -0.5
1,2,3,4,5,6,7,8 9,10,11,12,13,14,15 -2.2
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ing my earlier work [44]. One component of ESTC is an efficient search
method that incorporates look-ahead to select a near optimal set of clus-
ters efficiently, given a heuristic that evaluates a set of clusters (a cluster-
ing). QDC uses ESTC’s search method with an improved heuristic (H(C))
to select a set of clusters to show the user. The remainder of this section
describes QDC’s heuristic.

5.8.1 Selecting High Quality Clusters using Query Distance

Section 5.5 estimated base cluster quality (baseQuality(b)) using two fac-
tors: the size of the cluster (|b|) and Query Distance (QD(b)). For base
clusters, cluster size was useful because it predicted the probability of user
interest and Query Distance was useful because it predicted the ambiguity
of terms. For the same reasons, these factors are also useful for estimating
cluster quality. However, there is a subtle difference between the desired
properties of base cluster quality and cluster quality.

Query Distance distinguishes terms according to their ability to resolve
the ambiguity in the query as discussed earlier in section 5.5.2. While ideal
for determining the pure quality of a cluster, it acts in opposition to se-
lecting only top-level clusters: terms with the lowest query distance are
typically the most specific terms and therefore generally reflect sub-topics
rather than top-level topics, which are typically represented by broader
terms.

Cluster size partially compensates for the sub-topic preference of Query
Distance, and ranks high quality top-level topics level with high quality
sub-topics as shown earlier in figure 5.11 because top-level topics tend to
be larger. To find the broader top-level clusters, QDC uses an additional
size factor to give additional weight to the broader top-level clusters.

QDC uses three factors to estimate cluster quality (quality(c)):

1. Cluster Size = |c|

2. Average Base Cluster Query Distance = QD(c)
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3. Number of Base Clusters = log2(|base(c)|+ 1)

quality(c) = log2(|base(c)|+ 1)
|c|

QD(c)

The first factor, cluster size, mirrors the definition for base cluster quality.
The second factor, Query Distance, was modified to handle the composite
nature of clusters by finding the average Query Distance of its base clus-
ters.

QD(c) =

∑
b∈base(c)QD(b)

|base(c)|

The third factor is new14 and exploits the information gained from the
composite nature of clusters by using the number of base clusters.

The more base clusters in a cluster, the greater the evidence that the
cluster represents a semantically meaningful group of pages. However,
the increase in evidence with each additional base cluster decreases. There-
fore, the requirement is a function with a monotonically decreasing first
derivative; QDC uses the logarithm.

The addition of the third factor not only improves accuracy, it also
prefers top-level topics to sub-topics because top-level topics are broader
and therefore generally contain more base clusters. Table 5.4 confirms this
by calculating the quality for clusters constructed for the query “Jaguar”.
The top-level topics “Animal” and “Car” have dramatically higher qual-
ity than the clusters for their respective sub-topics “Habitat”, “Hunting”,
“Mustang”, and “Automatic”, while all clusters have higher quality than
the ambiguous15 “Trademark” cluster. Additionally, table 5.4 shows that
while the combination of Query Distance and cluster size do not distin-
guish clusters representing top-level topics and sub-topics, the third factor
clearly separates the top-level topics from their respective sub-topics.

14The third factor is newly applied to measuring cluster quality; the same formula was
also used in section 5.6 to eliminate outliers. This occurs because both assess the value of
information from the same variable.

15Notably, by the cluster selection stage of QDC, very few low quality or ambiguous
clusters remain at all.
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Table 5.4: Cluster quality separates top-level topics (*) and sub-topics for the

“Jaguar” query

Cluster QD(c) |c| |c|
QD(c)

|base(c)| quality(c)

Animal* 1.20 48 40 16 163
Habitat 0.67 15 22 2 35
Hunting 0.75 33 44 3 88
Car* 1.24 109 88 107 594
Mustang 0.45 10 22 1 22
Automatic 0.89 19 21 1 21
Atari* 0.66 18 27 1 27
Trademark 1.40 10 7 2 11

5.8.2 Selecting Top-level Clusters using Coverage

A good clustering should not only consist of high quality clusters, but
should also have high coverage — it should contain clusters representing
each of the topics. Assuming the clusters all have high quality, a surrogate
for coverage is to measure the fraction of pages from the result set that are
covered by at least one cluster in the clustering. When most of the pages
are covered, it is reasonable to believe that most topics are also covered.

While quality distinguishes good clusters from bad clusters (ambigu-
ous / semantically meaningless) and top-level topics from their respec-
tive sub-topics, it does not necessarily distinguish top-level topics from the
sub-topics of other top-level topics. For example, table 5.4 shows that the
cluster for top-level topic “Atari” has a lower quality score than the cluster
for the “Animal” sub-topic “Hunting”. Fortunately, the coverage surro-
gate addresses this case, as the “Atari” topic will be included because it
improves coverage, but the “Hunting” sub-topic will be excluded because
it will fail to increase coverage after the higher quality “Animal” cluster is
added.
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There is yet another case to consider; the “Hunting” cluster may con-
tain pages that are not in the parent “Animal” cluster. This suggests that
overlap is an important factor for the coverage surrogate. Using only the
fraction of covered pages would suggest that the “Hunting” cluster should
be added, but by considering overlap as well, it is easy to see that it adds
little value.

QDC evaluates a candidate set of clusters (C) using a new heuristic
(H(C)) that combines three factors:

1. Cluster Quality (q(c))

2. Page Coverage (CO)

3. Overlap (CP − CD)

H(C) =

(∑
c∈C

q(c)

)
− αCO − β(CP − CD)

where CO is the number of pages not covered by any of the clusters, CP
is the number of pages covered by the clusters, CD is the number of dis-
tinct pages covered by the clusters, and q(c) is a measure of cluster quality
based on quality(c).

The new heuristic has two parameters that enable control of clustering
characteristics: α (the experiments use 0.2) and β (the experiments use 0.3).
α controls coverage and increasing αwill generate clusterings with greater
coverage at the cost of cluster quality. β controls overlap and increasing
β will lead to clusterings with fewer pages in multiple clusters at the cost
of page coverage. In concert, α and β also control the relative importance
of cluster quality and thus, as shown in the next section, influence the
number of clusters shown to the user.

5.8.3 Number of Clusters

Ideally, regardless of any parameters, the user will inevitably see the high-
est quality top-level clusters. The parameters should instead control the
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relative number of boundary cases shown to the user. Given the heuris-
tic (H(C)) for clustering quality, the clusters themselves principally deter-
mine the number of clusters shown to the user through their quality (q(c)).
The challenge is to ensure q(c) entails these conditions.

If q(c) were set equal to quality(c), H(C) dictates that clusters be added
until no cluster has quality exceeding its overlap with existing clusters,
subject to the number of new pages covered by the cluster. Usually quality(c) >
|c|, so the quality will usually exceed the overlap, which means that almost
every cluster is added — not a desirable outcome. Clearly, q(c) must be
substantially less than quality(c).

QDC defines q(c) as the logarithm of the ratio between quality(c) and
the mean cluster quality of all clusters.

q(c) = log2(
quality(c)

mean cluster quality
)

High quality clusters have above average quality and therefore, because of
the logarithm, positive quality values, whereas low quality clusters have
below average quality and therefore negative quality values. Using this ra-
tio also serves to normalize cluster quality and ensures consistency across
different clusterings.

As quality(c) assigns significantly higher scores to the top-level clus-
ters, the mean cluster quality is significantly higher than the median and
therefore, very few clusters have above average quality. This ensures that
QDC almost inevitably selects the highest quality top-level clusters (as
they are the only ones with positive quality values) and only selects lower
quality clusters when they contribute enough coverage to overcome their
negative quality. In concert, α and β control the exact amount they must
contribute, because together they control the relative importance of cluster
quality to page coverage and overlap.
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5.9 Cluster Naming, Cleaning, and Reordering

Having selected the clusters to show the user, clustering is complete. How-
ever, the clusters need naming and the clusters can be cleaned and re-
ordered to improve their usefulness to the user as described in section
5.3.5. QDC defines a measure of cluster-page relevance that it uses to clean
clusters and to reorder the pages in the clusters.

5.9.1 Cluster Naming

QDC names a cluster using the term that describes the cluster’s largest
base cluster.

name(c) = D(argmax
b∈base(c)

(|base(b)|))

Each base cluster term usually represents either a good name for the topic
or for one of its sub-topics. Since the largest base cluster is typically de-
scribed by the broadest term, which is most likely to reflect the topic,
rather than a sub-topic, this is a good choice for the name of the cluster.

5.9.2 Cluster Cleaning

Even after all the previous steps and attempts to remove outliers such as
those in section 5.6, the clusters still contain some outliers.

Since the clusters should relate to only one topic, pages that are in mul-
tiple clusters might be irrelevant in some of the clusters. QDC computes
the relevance of each page in each cluster and removes irrelevant pages
from clusters where two requirements are met: the page has relevance
below a threshold (the experiments use 0.1) and the page has higher rele-
vance in another cluster. A higher threshold will remove additional irrel-
evant pages but will also remove relevant pages, but the threshold is not
very sensitive because the second requirement limits the pages that can be
removed.
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Cluster-page relevance can be viewed as the probability that a page is
a member of the cluster. It varies between 0 and 1, with 0 being a page
that is completely irrelevant to the cluster. QDC defines the relevance of a
page (p) to a cluster (c) based on two factors:

1. the number of base clusters of which the page is a member

2. the size of the base clusters of which the page is a member

Page relevance is computed as the sum of the sizes of the cluster’s base
clusters of which it is a member, divided by the sum of the sizes of all of
the cluster’s base clusters.

relevance(p, c) =

∑
{b|b∈base(c)∧p∈b} |b|∑

b∈base(c) |b|

5.9.3 Cluster Reordering

As discussed in section 5.3.5, it is preferable to show the most relevant
results earlier. While most algorithms use the original search result order,
QDC improves on this by ranking and displaying the pages in each cluster
according to their relevance to the cluster. This improves cluster quality
from the user’s perspective because any remaining irrelevant pages are
frequently near the bottom of clusters and so users rarely see them. Be-
cause of this, in practice, it may be preferable to skip the step of cleaning
clusters and use only reordering.

5.10 Evaluation

The aim of Query Directed Clustering (QDC) was to improve clustering
performance for easy ambiguous queries, without being less efficient than
existing approaches. This section evaluates QDC both quantitatively and
qualitatively on these objectives and finds that QDC significantly improves
clustering performance for easy ambiguous queries, while being substan-
tially more efficient than existing approaches.
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5.10.1 Algorithm Efficiency

Suffix Tree Clustering (STC) is considered to be very efficient [201]. Even
so, QDC is on the order of ten times faster than STC and on the order of
one hundred times faster than K-means. This speed-up is achieved even
though the later stages of QDC are substantially more complex than STC,
because QDC significantly reduces execution time by pruning many base
clusters during base cluster construction using the new query directed
cluster quality measure.

5.10.2 Quantitative Evaluation of Clustering Performance

The evaluation used 13 measurements to compare the clustering perfor-
mance of QDC against four other web page clustering algorithms (STC,
ESTC, K-means, and Random Clustering) on eight data sets: search results
of four different queries (“salsa”, “jaguar”, “gp”, and “victoria university”)
using both full-page and snippet data. The queries are of varying cluster-
ing difficulty. The first three queries are easy ambiguous queries, while
the fourth (“victoria university”) is a hard ambiguous query. The simplest
is “salsa”, which has two distinct clusters (both large) and few outliers.
“jaguar” is more challenging with five distinct clusters (one large, three
medium, and one small) and some outliers. “gp” is harder with five dis-
tinct clusters (two large, and three small) and many outliers. “victoria
university” is the hardest with five very similar clusters (two large, one
medium, and two small) and few outliers.

I compared the algorithms under an external evaluation methodology
using a gold standard method [167, 45] with a rich ideal clustering struc-
ture and QC4 measurements (quality and coverage) as discussed in chap-
ter 4, because this is well suited for web page clustering evaluation. In ad-
dition to QC4 measurements, the standard16 Precision, Recall, F-measure,

16Specifically, those defined in section 4.3 with Recall corresponding to Total Recall and
F-measure corresponding to Cluster F-measure.
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Entropy, and Mutual Information measurements [167, 45] provide fur-
ther evidence for the results. All measurements come in both average
and cluster-size weighted varieties (except mutual information for which
averaging is not applicable), providing 13 measurements in total. Aver-
age measurements treat all clusters as equally important, while weighted
measurements treat larger clusters as more important. Note that there is
a tradeoff between different measurement pairs: quality vs coverage, pre-
cision vs recall, and entropy vs recall. F-measure and Mutual information
provide single measures that combine both aspects. For all measurements,
higher is better, except entropy, for which lower is better.

On average QDC performs substantially better than the other algo-
rithms. Figures 5.18, 5.19, 5.20, and 5.21 show that for full text data, on
average, QDC outperforms all of the other algorithms on all measure-
ments by convincing margins. Figure 5.22 shows the overall percentage
improvement each algorithm makes over the random clustering using the
combined QC4 measure 1

2
(H(AQ,AC) + H(WQ,WC)), where H is the

Harmonic Mean, AQ is Average Quality, AC is Average Coverage, WQ is
Weighted Quality, and WC is Weighted Coverage.

On the full text data, QDC performed significantly better than the Ran-
dom Clustering (p < 0.05) on all measurements. It performed signifi-
cantly better than K-means (p < 0.05) on all measurements, except Av-
erage Coverage and Average Precision, where it was almost significantly
better (p < 0.10). It performed significantly better than STC (p < 0.05)
on Average and Weighted Quality, and Average and Weighted F-measure,
and was almost significantly better than STC (p < 0.10) on Average and
Weighted Coverage, Weighted Precision, Average Recall, and Mutual In-
formation. It performed significantly better than ESTC (p < 0.05) on all
measurements, except Average and Weighted Recall, where it was almost
significantly better (p < 0.10).

A more detailed investigation of all test cases shows that QDC was al-
most universally better than the other algorithms. In 48 of the 52 full text
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Figure 5.18: Individual QC4 measures averaged over all full-text queries

Figure 5.19: Precision and Recall averaged over all full-text queries
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Figure 5.20: F-measure averaged over all full-text queries

Figure 5.21: Entropy and Mutual Information averaged over all full-text queries
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Figure 5.22: Average improvement over a random clustering, measured using a

combination QC4 measure over all full-text queries

test cases (13 measurements on each of 4 data sets), QDC was better than
all the other algorithms. In the four cases where QDC was worse, QDC
had second best performance. The four cases were for the “salsa” data set,
which was the easiest search because all algorithms performed compar-
atively well on this data set. In all cases where QDC performed worse,
the advantage of the other algorithms was very marginal (typically a few
percent). Furthermore, when considering the tradeoffs, it was clear that
QDC performed better overall. When QDC had slightly worse average
and weighted precision and entropy than STC, it had much better aver-
age and weighted recall and would be better on a combination score that
balanced both factors in the tradeoff.

I also evaluated the performance of QDC against the other algorithms
at clustering just snippet data. Figures 5.23, 5.24, 5.25, and 5.26 show the
13 measurements averaged across the four data sets and figure 5.27 shows
the percentage improvement each algorithm makes over the random clus-
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tering. The results show that QDC offers a very large improvement in per-
formance over other clustering algorithms. QDC has better performance
in all but the unreliable17 recall measurements (where QDC is slightly out-
performed by K-means18), but QDC does better on precision and entropy
and would be better on a combination score that balanced both factors in
the tradeoff.

On the snippet data, QDC performed significantly better than the Ran-
dom Clustering (p < 0.05) on all measurements. It performed significantly
better than K-means (p < 0.05) on Average and Weighted Quality, Average
and Weighted Precision, and Average and Weighted Entropy. It performed
significantly better than STC (p < 0.05) on Average and Weighted Qual-
ity, Average and Weighted Precision, and Average and Weighted Entropy,
and was almost significantly better than STC (p < 0.10) on Weighted Re-
call and Weighted F-measure. It performed significantly better than ESTC
(p < 0.05) on Average and Weighted Quality, Average and Weighted Pre-
cision, Weighted Recall, Weighted F-measure, and Average and Weighted
Entropy, and was almost significantly better than ESTC (p < 0.10) on Av-
erage Recall and Average F-measure.

As with the full text, QDC was almost universally better than the other
algorithms on the snippet data sets. In 44 of the 52 snippet test cases, QDC
was better than all the other algorithms. In five of the eight cases where
QDC was worse, QDC had second best performance. Four of the cases
were for weighted recall, a particularly unreliable measure that often gave
better performance to the random clustering than to other algorithms. Two
of the cases were for F-measure, which frequently gave better performance
to the random clustering. The other two cases were the coverage for the
“salsa” data set. In all eight cases the coverage or recall were only slightly
worse (a few percent), but the quality, precision, and entropy were much

17The recall measurements fail here because they overvalue the mere inclusion of pages
in the clustering: the random assignment of otherwise excluded pages to new clusters
will increase recall.

18As k-Means ensures all pages are assigned to a cluster.
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Figure 5.23: Individual QC4 measures averaged over all snippet queries

Figure 5.24: Precision and Recall averaged over all snippet queries
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Figure 5.25: F-measure averaged over all snippet queries

Figure 5.26: Entropy and Mutual Information averaged over all snippet queries
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Figure 5.27: Average improvement over a random clustering, measured using a

combination QC4 measure over all snippet queries

better (twice as good in seven of the eight cases).

5.10.3 Qualitative Analysis of Clustering Usability

The results of the quantitative external evaluation are impressive, but the
real test of a web page clustering algorithm is end user usability. While
a formal user study would best confirm the results from the quantitative
evaluation, this is costly and time consuming to perform, so instead I per-
formed an informal qualitative analysis and comparison with other clus-
tering algorithms. The analysis used the same four queries as the quan-
titative evaluation (“salsa”, “jaguar”, “gp”, and “victoria university”) and
indicates the results from the quantitative evaluation may have underesti-
mated the real world usability and performance of QDC. In addition to the
algorithms used during the quantitative analysis, the qualitative analysis
also evaluates Lingo and Vivisimo [162]. This section primarily presents
the results from the “jaguar” query (the results were similar for the other
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queries), but examines all results for QDC. Additionally STC (due to result
similarity with ESTC) and Random clustering (due to its obviously poor
performance) are excluded here, but were included in the analysis.

Table 5.5 shows the cluster names and number of pages in each cluster
produced by QDC, K-means, ESTC, Lingo19, and Vivisimo20 [162] for the
search “jaguar”, sorted by size. Unlike the other algorithms, Lingo and
Vivisimo clustered snippets instead of full-page data and used different
data sets of 200 and 228 pages respectively. To account for those differ-
ences, the Lingo and Vivisimo clusters were adjusted: normalizing cluster
sizes to account for the different data set sizes, and truncating overly long
cluster names. For Lingo, table 5.5 displays only the ten largest clusters of
twenty-five. Table 5.6 shows the names, QC4 Quality, and QC4 Coverage
for each cluster produced by QDC for each of the 4 full-text queries.

The qualitative analysis achieves three goals:

1. identifies the cause of the improvement shown by QDC in the quan-
titative analysis as a reduction in the number of semantically mean-
ingless clusters

2. evaluates additional usability factors ignored by the quantitative eval-
uation

3. discovers the limitations of QDC (which are also shared by the other
algorithms)

Qualitative analysis indicates that the usability and performance of
QDC is even better than is shown by the quantitative evaluation, because
the quantitative evaluation did not penalize the creation of overly specific
clusters since the gold standard included them. Instead, the quantitative
evaluation shows QDC produces fewer semantically meaningless clusters,
and QDC’s clusters had fewer irrelevant pages and covered additional rel-
evant pages.

19Lingo results are from http://carrot.cs.put.poznan.pl.
20Vivisimo results are from http://www.vivisimo.com.
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Table 5.5: Clusters for “jaguar”

QDC k-Means ESTC
Car 109 Include 115 Car 56
Cat 48 Car 22 OS 10 33
Apple 35 OS 17 Panthera onca 21
Atari 18 Free 16 Online 9

Largest 14 Pictures 9
Type 13 System 8
Atari 12 Racing 7
Service 12 Prices 7
Panthera 9 Auto 7

Wildlife 7

Lingo Vivisimo
Other 68 Club 48
Locate a Used Car 29 Parts 46
Mac OS Jaguar 24 Jaguar Cars 41
Cat the Jaguar 20 Photos 32
Jaguar Auto Parts 18 Classic 16
Safety Information 16 Animals 7
Jaguar Club 15 Mark Webber 7
Home Page 13 Maya 5
Official Web 13 Enthusiast 4
Amazon.com Books 11 Panthera onca 4
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Table 5.6: QC4 Quality and QC4 Coverage of QDC Clusters

Query Clusters QC4 Quality QC4 Coverage

Salsa
Dance 0.87 0.88
Food 0.63 0.87

Jaguar
Car 0.70 0.81
Cat 0.68 0.85
Apple 0.70 0.79
Atari 0.96 0.78

GP
Racing 0.50 0.67
Doctor 0.90 0.76
Games 0.60 0.71

Victoria University
Melbourne 0.41 0.49
Wellington 0.85 0.81
UVic 0.86 0.46
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QDC finds fewer semantically meaningless clusters compared with the
other algorithms. For instance, table 5.5 shows that QDC found none
when clustering “jaguar”, whereas K-means found three (“include”, “free”,
and “service”), ESTC and Lingo each found two, and Vivisimo found one.
Furthermore, QDC found no semantically meaningless clusters for the
other queries either as shown in table 5.6. This explains much of the QDC’s
quality advantage in the quantitative results, the remainder is accounted
for by the fact that QDC’s semantically meaningful clusters contain fewer
irrelevant pages. Table 5.5 also shows that QDC finds substantially larger
clusters than the other algorithms. Considering these clusters are also of
higher quality accounts for QDC’s coverage advantage.

The quantitative evaluation overlooked an important usability factor
identified in section 5.3.4: the user should see only top-level high quality
clusters. Table 5.6 shows the clusters found by QDC for all queries, all are
top-level high quality clusters. QDC finds larger, broader clusters such as
“Car” that represent top-level topics, while the other algorithms intermix
these with smaller more specific clusters that represent sub-topics such
as “Locate a Used Car” and “Jaguar Auto Parts”. Showing only top-level
topics, as QDC does, is preferred. Firstly, it maximizes the probability
of successful refinement, because algorithms that select sub-topics often
miss some top-level topics entirely because the sub-topics appear more
relevant than the smallest top-level topics. For example, ESTC, Lingo, and
Vivisimo all miss the top-level “Atari” topic for the “Jaguar” query. Sec-
ondly, the decision process is simpler because there is only one relevant
choice. For example, QDC shows 4 clusters for the “Jaguar” query and
each represents a distinct topic, while the other algorithms find additional
clusters that sometimes represent exactly the same topic — for instance,
ESTC finds a “Car” cluster and an “Auto” cluster. Additionally, since QDC
finds exactly the top-level topics, it can be applied recursively to form an
effective hierarchical clustering algorithm.

Close inspection of table 5.6 shows that QDC missed some of the small-
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est topics. It missed one “Jaguar” topic and two topics in each of “GP” and
“Victoria University”. While not ideal, it should be noted that none of the
other algorithms found any of these missed topics and indeed, the other
algorithms missed additional topics that were much larger like Atari in
“Jaguar”. QDC missed these small topics, because they were smaller than
QDC’s minimum base cluster size. There are two reasonable strategies to
address this problem. The first is to adjust the parameters so that the topics
are larger. QDC can achieve this by simultaneously increasing the num-
ber of search results and lowering the base cluster threshold, but comes at
the cost of increased runtime. A second strategy is to run a second query,
which excludes the clusters from the first query, and to cluster that. For
example, in the case of “Jaguar”, cluster the search results of the query
“Jaguar -Car -Cat -Apple -Atari” and incorporate those clusters with the
clusters from the first query. My experiments indicate that the second
approach is more efficient21 and produces clusters of higher quality, al-
though there is little quantitative improvement as only average coverage
improves significantly22, due to the small size of these topics.

5.10.4 Stage Performance and Sensitivity

I conducted experiments to discover the relative importance of each of
the five innovations, which roughly correspond to the five stages of the
algorithm. Each innovation and stage of the algorithm individually has
a positive effect on clustering or algorithm performance, though not as
much as the combination of all five.

The query directed cluster quality guide has a large impact on perfor-
mance. The pruning it enables in the first stage of the algorithm dramati-
cally improves algorithm efficiency and clustering performance. While it
is difficult to directly measure the quantitative accuracy of the query dis-
tance measure, qualitative analysis (from which figures 5.10 and 5.11 were

21twice the cost, so still five times faster than STC
22up to approximately the level of weighted coverage
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extracted) showed that it performs well at separating specific and broad
terms and at identifying terms that would lead to high quality and non-
ambiguous clusters.

Using the cluster description similarity in the second stage significantly
improves both cluster quality and cluster coverage. Experiments con-
firmed that the threshold for cluster content similarity could be signifi-
cantly reduced as a result, which lead to improved coverage.

The new cluster splitting method in the third stage solves the cluster
chaining problem and improves cluster quality. This was independently
verified by applying the cluster splitting method to synthetic test cases,
including cases that exhibited cluster chaining such as those shown in sec-
tion 5.7.4.

The improved heuristic of the fourth stage improves the efficiency of
cluster selection significantly over ESTC and makes far better selections.
Quantitative analysis (from which table 5.4 was extracted) confirmed that
the heuristic assigns significantly higher quality to high quality top-level
clusters than to sub-topics. Qualitative analysis (section 5.10.3) confirmed
this enables QDC to select high quality top-level clusters and to choose an
appropriate number of clusters to show the user. The improvement to the
heuristic is an additional result of the query directed cluster quality guide.

The ranking method used in the final stage improves cluster quality,
but does not contribute much to the quantitative evaluation discussed pre-
viously in section 5.10.2, because none of the measures used take the or-
dering into account. An independent analysis confirmed the benefits of
the ranking method and found that approximately 90% of the irrelevant
pages that were hurting cluster quality were placed in approximately the
bottom 10% of the cluster rankings; when sorted by search position, they
were distributed randomly throughout the cluster rankings.

The heuristics in QDC use quite a number of parameters. For the ex-
periments, the parameters were set on the basis of what proved effective
during the independent analysis of each stage of the algorithm. Further
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experiments explored the sensitivity of the results to the parameter values
and found that with one exception all parameters were able to be shifted
in either direction by at least 20% without making more than a ±2% dif-
ference in average clustering performance. The query distance threshold
in the first stage of the algorithm was more sensitive: shifting this by 20%
could make up to a ±6% difference in clustering performance. This is a
further indication of the importance and effect of query distance in QDC.
It may be worth tuning this parameter.



Chapter 6

Query Aspect Approach

Although users often do not realize it, relatively few hard searches con-
sume most of the time they spend searching. To improve performance sub-
stantially, search engines must make it easier to find relevant documents
for these hard searches; either by helping users to refine their queries or by
finding results that are more relevant for their existing queries. However,
this is not trivial, because even experienced searchers can struggle to find
effective queries for hard searches.

When a search goal has multiple components or aspects, documents
that represent all the aspects are likely to be more relevant than those that
only represent some aspects. Current web search engines often produce
result sets whose top ranking documents represent only a subset of the
query aspects. By expanding the query using the right keywords, the
search engine can find documents that represent more query aspects and
performance improves.

This chapter presents the Query Aspect Approach (QAA), a novel method
that helps search engines find good query expansion terms. The method
uses a simple technique that helps search engines interpret queries in a
way that is closer to how users interpret them. The QAA has a number of
applications and can help improve performance for many different types
of hard search. This chapter explores two of these applications. AbraQ

253
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uses the QAA to improve queries with underrepresented aspects auto-
matically. Qasp uses the QAA to suggest refinements for hard ambiguous
queries. The chapter concludes by outlining several other applications in-
cluding one that addresses queries for narrow search goals.

6.1 Multi-Aspect Queries

Search goals are frequently a composition of several aspects. For example,
a search goal of finding possible holidays has one aspect, but searching for
travel agents in Los Angeles who deal with cruises involves three different
aspects. To express their search goal as a query, users typically select one
term (of one or more words) for each aspect from their search goal. Queries
for these search goals might be “holidays” and “Los Angeles travel agents
cruises”. Query aspects are the aspects of the search goal that the query
represents explicitly.

Many queries have multiple aspects and queries for hard searches are
even more likely to have multiple aspects. I confirmed this by classify-
ing whether 150 random queries from the AOL query logs [139] contained
multiple aspects, 50 each from easy searches (those taking less than 5 min-
utes), hard searches (those taking more than 5 minutes), and very hard
searches (those taking more than 30 minutes). Table 6.1 shows the results
of this analysis.

Table 6.1: Percentage of queries with multiple aspects

(95% confidence interval)

Query Type Percentage
Easy 62% ± 13%
Hard 76% ± 12%
Very Hard 84% ± 10%

Since many queries have multiple aspects and a majority of the queries
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for hard searches have multiple aspects, users would benefit significantly
from an improvement in performance for multi-aspect queries. The QAA
helps improve performance for multi-aspect queries.

6.2 Related Work - Query Expansion

6.2.1 Retrieval Model and Term Weighting

Query expansion methods (both AQE and IQE) have three components:
the retrieval model, term weighting, and term selection. The retrieval
model used for query expansion is determined by the underlying search
engine and is usually the Boolean model, the vector space model, or the
probabilistic model [150].

Term weighting relates to the importance placed on the different terms
used to expand the query and is dependent on the retrieval model. For the
Boolean model, the selected terms simply extend the query [78] and in ad-
vanced variants may modify the Boolean connectives (and and or) between
query terms [102]. For the vector space model, Rocchio’s method [148, 25]
is the most common weighting scheme, which increases the weight of rel-
evant terms and decreases the weight of irrelevant terms, although there
are also many other methods including Robertson Selection Value, CHI-
squared, and Kullback-Leibler distance [30]. For the probabilistic model, a
wide variety of approaches exist [183]: Robertson and Sparck Jones [146]
introduced four different term weighting schemes and Vinay et al. [183]
used a Bayesian approach.

All query expansion methods benefit equally from more sophisticated
retrieval models and term weighting, but the manual tuning of parameters
is critical to performance [175]. As the focus of the QAA is on term selec-
tion, the evaluation of QAA will use a simple Boolean retrieval model,
because this removes any bias that the necessary tuning of retrieval model
and term weighting parameters may introduce.
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6.2.2 Term Selection

Term selection involves finding the terms used to expand the query. Meth-
ods that use local document analysis typically select terms from the doc-
uments that are assumed to be relevant. For Relevance Feedback [150],
these are the documents marked relevant, for Pseudo-Relevance Feedback
[156] these are the top N documents in the result set, and for Web Page
Clustering (Chapter 5) these are the documents in the selected cluster. The
terms are typically ranked using document frequency (df), term frequency
(tf), or term frequency inverse document frequency (tf-idf) [181] and the
highest ranking terms are used to expand the query. The problem is that
these approaches only improve performance when there are at least some
relevant documents. For hard searches, there are often no relevant docu-
ments near the top of the result set.

Thesauri Expansion [157] and Query Log Analysis [52] use a different
approach to select terms. Thesauri Expansion selects terms semantically
related to the query terms from a thesaurus such as Word-Net [88] and
Query Log Analysis selects terms from similar queries performed previ-
ously by other users. Methods can also select terms using global docu-
ment analysis by looking for words that frequently co-occur with query
terms in the whole corpus [195]. The problem with these approaches is
that they can increase query drift (changing the meaning of the query),
hurting Precision.

While the query expansion methods differ in their source of expan-
sion terms, Theobald et al. [175] found that all query expansion methods
aim to select the terms that are the most semantically related to the query
terms. This term selection strategy is sensible, because the addition of less
closely related terms is more likely to change the meaning of the query,
causing unwanted query drift. The QAA uses a different, counterintuitive
approach to select terms not necessarily closely related to the query terms.
Instead of attempting to avoid query drift, the QAA leverages the change
in meaning to shift the search engine’s interpretation of the query closer
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to the user’s interpretation, improving Precision in the process.

6.3 Related Work - Aspects

6.3.1 Query Aspect Identification

There are several methods for identifying query aspects. A simplistic ap-
proach is to split the query into single words [128, 199]; this does not
sufficiently capture the aspects because many words change substantially
from their individual meaning once placed into a sequence. For example,
“New” and “New Zealand” have completely different meanings.

Two better approaches, the syntactic tagging approach and the dic-
tionary approach, stem from methods of identifying common phrases in
queries [49]. The syntactic tagging approach uses part of speech tagging
with natural language queries, but most web search queries are just an un-
structured sequence of words and not properly formed natural language
(section 2.6.1). Dictionary approaches work with unstructured queries,
but can have limited scope and therefore work best with domain specific
corpora.

Another approach is the Query Splitting method [200], which uses
clustering to separate the query. Although the Query Splitting method
processes the query as individual words, the clustering process puts them
together into multi-word aspects. However, because Query Splitting ig-
nores the term order from the original query, the method may join dis-
parate parts of the query to create non-existent aspects. For example, the
query “Radio Waves and Brain Cancer” may be split into three aspects
“Brain Waves”, “Radio”, and “Cancer”, when the aspects are really “Ra-
dio Waves”, “Brain”, and “Cancer”. In practice, the best performing im-
plementation failed to identify multiple aspects in 26% of multi-aspect
queries [200] and incorrectly split some queries [66]. For example, the
query “Lyme disease arthritis” was separated into “Lyme” and “disease
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arthritis”, when the aspects are really “Lyme disease” and “arthritis”.
The QAA introduces a new approach that uses global document anal-

ysis to identify multi-word query aspects from both unstructured queries
and natural language queries on any corpus.

6.3.2 Underrepresented Query Aspects

Queries have underrepresented aspects when individual documents in the
result set do not reflect all the different query aspects, and this has been
termed the Aspect Coverage Problem [29]. Searches may fail because the
retrieved documents focus on a subset of the aspects1 or focus on an ir-
relevant aspect. For example, the query “disasters tunnels transportation”
may find some documents that discuss disasters with no relation to tun-
nels and other documents that discuss tunnels but not disasters. The prob-
lem is significant because more than half the categories of search failure
involve underrepresented aspects [29].

At the Reliable Information Access workshop [24], 1000 person hours
were devoted to analyzing the cause of failure for queries across a range of
state-of-the-art search systems. The result of this mammoth effort was the
surprising result that higher order constraints and natural language un-
derstanding is not especially important for state-of-the-art search systems
because they currently fail at a much more basic level: the top ranked doc-
uments often fail to reflect some aspects. Of the 44 failures they analyzed,
two failed for simple technical reasons (e.g. stemming and tokenization),
seven failed due to a lack of natural language understanding or under-
standing of relationships, and 35 failed due to underrepresented query
aspects.2

My analysis of a random selection of 15 hard and 15 very hard multi-
aspect queries from the AOL query logs [139] using Google reached a sim-

1Individual documents may focus on different subsets.
2Seven of the 35 involved aspects that would require natural language understanding

to identify them.
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ilar conclusion. Of the 21 that failed, 12 had underrepresented query as-
pects, four were ambiguous, and five failed because of higher order con-
straints and natural language. Note that it is unsurprising that some of the
hard searches proved successful on a different search system, because dif-
ferent search systems generally retrieve very different documents. Even
so, researchers have found that the major cause of failure for any particu-
lar query is usually the same across search systems [24].

The underrepresentation of query aspects is a significant problem be-
cause the utility of the result set depends strongly on the number of rele-
vant aspects covered [29].

6.3.3 Using Aspects to Improve Search

Once identified, query aspects are useful for improving search. Researchers
[195, 43] have found that aspects affect query expansion and that terms re-
flecting multiple aspects of the original query often perform better.

Although underrepresented query aspects are a very significant prob-
lem, few publications address them directly. Mitra et al. [128] address un-
derrepresented query aspects using the Boolean Constraint method (Bool-
Con). BoolCon is based on the valid assumption that the more aspects
covered by a document, the more likely it is to be relevant. However, Bool-
Con uses a very simplistic model of aspect coverage. Each non stop word
is treated as an aspect and an aspect is considered covered in a document
if it contains the word — this effectively moves BoolCon closer to an exact
match model. BoolCon incorporates proximity constraints and term cor-
relation to improve performance. The proximity constraints require that
words occur together within a window (sequence of words) to account for
long documents using terms in unrelated contexts. The term correlations
down-weight related aspects, thereby increasing the importance of inde-
pendent aspects.

While BoolCon improves P@20 by 5% over the baseline (the SMART IR
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system with standard AQE [148]), it fails to solve the problem of under-
represented query aspects. The problem is that aspects are not necessarily
single words and documents containing the aspect’s individual words do
not necessarily cover the aspect (in fact, even documents containing the
aspect’s term as a phrase do not necessarily cover the aspect). Note that
Google demonstrably has problems with underrepresented query aspects,
even though it finds only pages containing all query terms and probably
has equivalents to proximity constraints and term correlations.

Researchers have also used aspects to address other search problems.
Neves et al. [133] used aspects in the stepping stones and pathways method
to address searches where no single document contains all the desired con-
tent, but the desired content can be found from a series of documents.
Khan and Khor [101] used local document analysis to discover related as-
pects not expressed in the query that may be unknown to the user.

The QAA identifies multi-word aspects and then builds vocabulary
models for each aspect, which it uses to identify whether documents cover
each aspect. Extensions of the QAA address a range of different search
problems including underrepresented query aspects and hard ambiguous
queries.

6.4 Related Work - Query Difficulty

Query expansion is useful for some queries, but not others; most query ex-
pansion methods are only useful for easy queries that already have good
performance (section 2.7). Yom-Tov et al. [199] propose using estimates
of query difficulty to distinguish easy queries from hard queries and then
to improve performance by the selective application of AQE to the easy
queries. AbraQ (section 6.8), which uses the QAA, is the opposite of ex-
isting AQE methods in that it improves the performance of hard queries,
but may decrease the performance of easy queries. Consequently, it also
depends on estimates of query difficulty to distinguish the queries that it
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is likely to improve.

6.4.1 Evaluation

To evaluate methods of estimating query difficulty, researchers compare
the predictions of query difficulty with actual difficulty (measured by Pre-
cision) using standard correlation measures such as Kendall’s τ , Spear-
man’s ρ, and Pearson’s Correlation [199, 29, 186, 84].

Kendall’s τ measures the correlation between two rankings using a
function of the number of pairwise swaps needed to transform one rank-
ing into the other [186]. Spearman’s ρ measures how closely the rela-
tionship between predicted and actual difficulty describes a monotonic
function. Pearson’s Correlation measures how closely the relationship de-
scribes a linear function. The range of all three is −1 to 1, where −1 cor-
responds to inverse correlation, 0 to completely independent predictions,
and 1 to perfect agreement.

Let (p1, a1), (p2, a2), . . . , (pn, an) be a set of joint observations from the
predicted (P ) and actual (A) difficulty values.

Kendall’s τ =
nc − nd√

(n0 − n1)(n0 − n2)

n0 =
n(n− 1)

2

n1 =
∑
i

ti(ti − 1)

2

n2 =
∑
j

uj(uj − 1)

2

where nc is the number of concordant pairs, nd is the number of discordant
pairs, and ti and uj are the number of tied values in the ith and jth group
of ties for the predicted and actual values respectively. A pair, (pi, ai) and
(pj, aj), is concordant if (pi > pj∧ai > aj)∨(pi < pj∧ai < aj), is discordant
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if (pi < pj ∧ai > aj)∨ (pi > pj ∧ai < aj), and is neither if (pi = pj ∨ai = aj).

Spearman’s ρ = 1− 6
∑n

i=1 d
2
i

n(n2 − 1)

where di is the difference between the ranks of pi and ai. For tied values,
the associated rank is the arithmetic average of the ranks associated with
the ties.

Pearson’s Correlation =

∑n
i=1(pi − P )(ai − A)√∑n

i=1(pi − P )2

√∑n
i=1(ai − A)2

Unfortunately, these measures do not give a complete picture of how
effectively methods distinguish easy queries from hard queries. Kendall’s
τ is sensitive to any difference in ranking, but small differences are in-
consequential [186]. In this regard, both Spearman’s ρ and Pearson’s Cor-
relation are superior because they penalizes swaps by the square of the
distance. However, none of the measures account for the distribution of
easy and hard queries. For web search, the imbalance is very pronounced
and most searches are easy (section 2.3.1). Consequently, on typical data
sets, all three measures have bias towards the accuracy of predictions for
easy queries.

6.4.2 Prediction Methods

The challenge is estimating query difficulty. The robust track of TREC
2004 challenged participants to predict the rank of queries when ordered
by their Precision because it proved difficult in the question answering
track of TREC 2002 [186].

Researchers [29, 199, 130, 84] have developed a number of methods
for predicting the Precision of a query. The methods analyze the query,
the documents, the corpus, and the distances between them. Query fea-
tures include the frequency of query terms in the corpus and the syntactic
complexity of natural language queries. Document and corpus features
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include the score of the top ranked document, the overlap between the re-
sults of sub-queries and the full query, and the similarity of the relevant
documents. Distances include Clarity (a measure of the distance between
the query and the corpus) and the distinctiveness of the relevant docu-
ments from the rest of the corpus.

Using Spearman’s ρ, He and Ounis [84] compared various implemen-
tations of five different approaches including the frequency of query terms
and Simplified Clarity. Of all the approaches, they found that Simpli-
fied Clarity has the strongest correlation (0.3993) with Precision for short
web-like queries. Yom-Tov et al. [199] compared several methods using
Kendall’s τ and found that methods using the frequency of query terms
(0.223) are quite comparable to methods using the top scoring document
(0.233). The remainder of this section examines the best approaches, in-
cluding Clarity, in more detail.

6.4.2.1 Morphological Features

Mothe and Tanguy [130] investigated the usefulness of sixteen different
morphological features such as the number of words and word length,
syntactical features such as the use of conjunctions, prepositions, and the
complexity of sentences, and semantic features such as the ambiguity of
query terms. Using Pearson’s Correlation they found correlations between
sentence complexity and Precision (-0.191), between the ambiguity of query
terms and Recall (-0.248), and no significant correlations with any other
features. As web users mostly use unstructured queries for web searches
and rarely look beyond the first page of results, this approach is unsuitable
for the QAA.4

3Note: comparing correlation values across experiments is problematic because they
generally relate to different evaluation measures, test conditions, corpora, etc., all of
which can significantly affect the absolute values.

4This approach may be useful if applying the QAA in other contexts.
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6.4.2.2 Document Overlap

Yom-Tov et al. [199] created a prediction method based on the overlap
between the top 10 documents from the result set and the result sets from
queries for individual query words. Yom-Tov et al. [199] evaluated the
method on two corpora (TREC-8 with 528,155 documents and WT10g with
1,692,096 documents) using Kendall’s τ . Using short web-like queries and
with the actual ranking set using P@10, the best correlation between the
predicted ranking and the actual ranking was 0.268 for TREC-8 and 0.187
for WT10g.

The problem for methods based on document overlap is that in larger
corpora there are enough documents that the top ranked documents for
most queries will all be different, lowering performance, and this may ex-
plain the difference between TREC-8 and marginally larger WT10g cor-
pora. For search engine corpora that are 4 – 5 orders of magnitude larger
than WT10g, the problem is likely to be even worse and even with an in-
creased number of documents, there is still likely to be no overlap. For ex-
ample, in the top 100 documents on Google there was no overlap between
“Black” and “Black Bear” and only 1 document in common between “Bear”
and “Black Bear”. Consequently, approaches based on document overlap
are unsuitable for search engine corpora.

6.4.2.3 Difficulty Model

Carmel et al. [29] tried to determine what makes queries difficult and iden-
tified the five factors shown in figure 6.1, where Q is the set of queries that
express the user’s search goal, C is the set of documents in the corpus, and
R is the set of documents that are relevant to the user’s search goal.

d(Q,C) is the distance between the queries and the corpus and d(Q,Q)

is the diameter of the set of different queries that express the user’s search
goal. d(Q,R) is the distance between the queries and the relevant docu-
ments. d(R,C) is the distinctiveness of the relevant documents from the
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Figure 6.1: Five factors that may affect the difficulty of queries

rest of the corpus and d(R,R) is the similarity between relevant docu-
ments.

Carmel et al. [29] evaluated each factor’s correlation with the actual dif-
ficulty using Pearson’s Correlation and Spearman’s ρ on GOV2 using 100
queries from the TREC terabyte tracks of 2004 and 2005. As only one query
was available for each search goal, they were unable to evaluate d(Q,Q).
However, the availability of manually identified relevant documents for
each query made it possible to measure the other factors. Their results
suggest that d(R,C) is most important factor, that d(Q,C) and d(R,R) in-
fluence difficulty substantially, and that d(Q,R) has almost no effect on
difficulty.

Without a set of relevant documents, d(R,C) and d(R,R) cannot be
computed, which leaves d(Q,C) (Clarity) as the most useful factor. Carmel
et al. [29] suggest estimating R and subsequently show using Pearson’s
Correlation that their distances are significantly better at predicting diffi-
culty than document overlap. However, it is unclear to what extent the
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non-estimated d(Q,C) contributed to that improvement. Furthermore,
as the evaluation used Pearson’s Correlation, it is not possible to distin-
guish whether the improvement is due to improved performance on easy
queries or improved performance on hard queries. As with AQE, the es-
timates are likely to be reasonable for easy queries (where most retrieved
documents are relevant), but poor for hard queries (where few or no re-
trieved documents are relevant). Consequently, as with typical AQE meth-
ods, the incorrect estimates for hard queries may actually reduce the qual-
ity of difficulty predictions for hard queries.

6.4.2.4 Clarity

Clarity [51] measures the difficulty of a query by its ambiguity, which it
measures using the relative entropy between the words in the documents
retrieved by the query (query model) and the words in the corpus (corpus
model).

Clarity =
∑
w∈C

P (w|Q) log2

P (w|Q)

P (w)

where w is an individual word, Q is the user’s query, and C is the corpus.
The larger the difference between the probabilities of words in the query
model and the corpus model, the higher the Clarity. Focused queries have
a high Clarity because they retrieve documents that use a small range of
terms frequently — the terms occur with much higher probability in the
query model than in the corpus. In contrast, ambiguous queries have a
low Clarity because they retrieve documents that use a wider range of
terms less frequently — the terms occur with only slightly higher proba-
bility in the query model than in the corpus.

Simplified Clarity [84] approximates Clarity by considering just the
words in the query.

Simplified Clarity =
∑
w∈Q

Ps(w|Q) log2

Ps(w|Q)

Ps(w)
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Ps(w|Q) =
f(w,Q)

|Q|

Ps(w) =
f(w,C)∑
w∈C f(w,C)

where f(w,Q) is the frequency of w in Q, and f(w,C) is the frequency of
w in C. The less frequent the query words are in the corpus, the higher the
Simplified Clarity. The idea is that specific queries (which typically use
rare terms) are usually easier (and less ambiguous) than general queries
(which typically use common terms).

Clarity and Simplified Clarity make no assumptions that conflict with
web search and they should both correlate with difficulty because both
measure factors related to search difficulty (section 2.3.4). However, it is
reasonable to expect Clarity, which takes all the words in the corpus into
account, to perform better.

Both Clarity and Simplified Clarity were evaluated using Spearman’s ρ
on TREC-7+8, with Clarity scoring 0.536 [51] and Simplified Clarity scor-
ing 0.399 [84]. While this evidence shows Clarity is better, it is not con-
clusive, as strictly these values should not be compared as the evalua-
tions were not back-to-back and they used different retrieval mechanisms.
Collins-Thompson and Bennett [42] have subsequently shown that Clarity
does outperform Simplified Clarity by 27% on GOV2 (0.137 vs 0.108) and
394% on WT10g (0.126 vs 0.032) according to Kendall’s τ .

As Clarity is possibly the best existing measure for short web-like queries
that is compatible with search engine corpora, this thesis evaluates the
QAA’s prediction method by comparing it with Clarity.

6.5 Query Aspect Approach

The Query Aspect Approach (QAA) is a novel approach that reduces the
distance between the query models of users and search engines. As ex-
plained in section 2.5.1, users and search engines interpret queries in radi-
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cally different ways and these differences make it harder for users to con-
struct effective queries. In particular, users expect the order, presence, and
semantics of the terms in their queries to affect the results, but search en-
gines generally do not. For example, users expect the presence of query
terms to narrow the results, but search engines often underrepresent some
query aspects.

The QAA analyzes the order of the words in a query and uses this to
identify the different query aspects. Then the QAA builds models of the
vocabulary associated with each aspect to capture their semantics. Finally,
the QAA uses the models to judge the relevance of a result set by measur-
ing the presence (or representation) of the query aspects in the result set.
This new relevance measure also provides a method for predicting query
difficulty, because difficulty is merely the inverse of relevance.

6.5.1 Word Order and Aspects

For search engines to find relevant results, they must understand the user’s
search goal. As the user’s query is the only source of information about the
user’s search goal, search engines must infer the user’s search goal from
the query. The problem is that one query may be consistent with multiple
search goals.

Query elements (words or aspects) can have multiple interpretations
because they may have different meanings or occur in different contexts.
The cardinality of the set of interpretations for sets of elements is even
larger and is potentially as large as the Cartesian product of the interpre-
tations of individual elements. The many interpretations correspond with
many different search goals, the problem is deciding which interpretation
corresponds with the user’s search goal.

By ordering search results by popularity, search engines pick a favourite
interpretation and hope that it corresponds to the user’s actual search goal.
For short queries that have relatively few interpretations, popularity is
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usually sufficient to select correctly, but for longer queries that have far
more interpretations, popularity becomes more likely to select incorrectly.
My analysis of the AOL query logs [139] corroborates this and finds that
the very hard searches have longer queries than the hard searches, which
have longer queries than the easy searches as shown in figure 6.2.

Figure 6.2: The relative fraction of queries of a given length for easy (blue), hard

(red), and very hard (green) searches. The easy searches have shorter queries

than the hard and very hard searches.

One way for search engines to improve relevancy is to reduce the num-
ber of interpretations. As some query aspects contain multiple words,
queries may contain fewer aspects than words and therefore, identifying
the query aspects can reduce the number of interpretations. The problem
is identifying the multi-word aspects.

In both unstructured queries and natural language queries the order
of words carries important semantic information: users typically group
words related to a single aspect into phrases. For example, users may
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search for “microsoft office 2007 reviews” or “reviews microsoft office 2007”,
but they probably would not search for “microsoft reviews 2007 office” or
“2007 office reviews microsoft”.

The QAA uses the order of words in the query and global document
analysis to identify multi-word query aspects by finding sub-sequences of
the query that commonly occur together as a phrase.

6.5.2 Word Semantics and Vocabulary Models

Users assume the semantics of the query terms are important, but search
engines ignore semantics and merely seek documents containing the query
terms. Query expansion methods add additional terms related to the query,
but as they do not necessarily correlate with the query aspects, they often
change the meaning of the query, causing query drift.

Different aspects invoke different vocabulary and this vocabulary cap-
tures the semantics of an aspect. For example, “microsoft office 2007” may
invoke terms like “windows”, “spreadsheet”, and “word processor”, while
“review” may invoke terms like “compare”, “performance”, and “evalu-
ate”. The QAA represents the semantics of aspects by building models of
the vocabulary of each aspect. The problem is identifying the vocabulary
of an aspect.

Any query containing an aspect may find documents reflecting the as-
pect. These documents are more likely to use the aspect’s vocabulary than
other documents, but documents from queries with fewer aspects should
be preferred because they are less likely to underrepresent aspects and
less likely to contain vocabulary associated with other aspects. However,
the model should still incorporate information from queries with multi-
aspects, because this information can discriminate between the relevant
and irrelevant interpretations of ambiguous aspects — generally, only a
subset of an aspect’s interpretations are relevant in the context of the query.
For example, the aspect “Jaguar” may refer to a car, animal, operating sys-
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tem, games console, tank, or aircraft, but in the context of a query contain-
ing the aspect “turret”, only the tank interpretation is likely.

The QAA constructs the vocabulary of each aspect by analysing the
term frequencies in documents returned from all the sub-queries consist-
ing of a subset of the full query’s aspects, but the QAA weights the sub-
queries containing fewer aspects more heavily.

6.5.3 Word Presence and Document Focus

Users choose query terms that describe their search goal and expect the re-
trieved documents to have a substantial focus on every query term. How-
ever, search engines often retrieve irrelevant documents that underrepre-
sent some query aspects.

The problem is that the mere appearance of words in a document is
insufficient evidence of the document’s focus. For example, the query
“black bear attacks” may retrieve many irrelevant documents that con-
tain all three query words. While the irrelevant documents may focus
on the black bear aspect by discussing their habitat, diet, and behaviour,
they may not focus on the attacks aspect, only mentioning in passing that
sometimes they attack (as shown in figure 6.3), making the attacks aspect
“underrepresented”.

As documents that represent an aspect are more likely to contain many
words from the aspect’s vocabulary, the presence and absence of vocab-
ulary can form a measure of document focus. If the documents from the
original query do not contain enough of the vocabulary of an aspect, then
that aspect is potentially underrepresented. For example, the query “mi-
crosoft office 2007 reviews” may retrieve documents that do not contain
words such as “compare” and “performance”, which are associated with
“review”, indicating that the review aspect may be underrepresented.

The QAA uses the aspect vocabulary models to measure the quality
or relevance of a result set by scoring how well the result set focuses on
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Figure 6.3: Documents for the query “black bear attacks” contain all the query

terms, but do not focus on the attacks aspect — the result set underrepresents

the “attacks” aspect.

each aspect. This measure has a number of applications: it can identify
underrepresented aspects, predict the difficulty of queries, and estimate
the performance of different query refinements.

6.6 Aspect Identification

This section describes the implementation of the aspect identification method
used by the QAA, analyzes its real-world efficiency, evaluates its perfor-
mance, and outlines directions for future improvement.

I did not attempt to tune or optimize the parameters of either the aspect
identification method or the QAA. Instead, I manually selected reasonable
values based on observations from a limited set of separate queries. There
were three reasons for not tuning or optimizing the parameters. Firstly, pa-
rameter tuning is highly dependent on the corpus and underlying search
engine, so any optimization of parameters would not be useful in future
research. Secondly, parameter tuning would increase the cost of evalua-
tion by increasing the number of relevance judgments required per query.
Thirdly, as the QAA makes extensive use of global document analysis, it
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must submit many queries to public search engines to collect the required
query result set counts and search engines such as Google and Yahoo im-
pose limits on the number of queries performed. The only drawback to
the lack of optimization is that the measured performance may be less
than what could have been obtained with optimization.

6.6.1 Algorithm

Taking the user’s query Q as input, the QAA removes a limited set of
stop words to produce a query Q′ of length n. The QAA segments Q′ into
aspects A = a1, a2, . . . , am such that each aspect is a distinct sequence of
words fromQ′ and the ordered concatenation of a1 through am reproduces
Q′.

Any subsequence of Q′ could represent an aspect. The QAA defines
two factors that use global document analysis to determine when a subse-
quence is an aspect: existence and support. To be an aspect, the subsequence
of words must exist — occur frequently enough relative to the frequency
of the set of words, and have support — occur frequently enough relative
to the frequency of all other permutations of the same words.

Existence(s) =
DP (s)

D(s)

Support(s) =
DP (s)∑

s′∈Perm(s)\{s}DP (s′)

where s is a subsequence of Q′, D(s) is the number of documents in the
corpus that contain all the words in s, DP (s) is the number of documents
in the corpus that contain the phase s, and Perm(s)\{s} is the set of all
permutations of the sequence s other than s itself.

For example, if s is “Air New Zealand”, then D(s) is the number of
documents that contain the word “Air”, the word “New”, and the word
“Zealand”, DP (s) is the number of documents that contain the phrase
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“Air New Zealand”, and Perm(s)\{s} = {“Air Zealand New”, “New Air
Zealand”, “New Zealand Air”, “Zealand Air New”, “Zealand New Air”}.

The score of a subsequence is the product of the Existence and Support
factors for the subsequence. The QAA considers a subsequence to be an
aspect if Existence(s) · Support(s) ≥ 1.0.

To segment the query into aspects, the QAA checks each subsequence
from left to right, largest to smallest, until all words are associated with
an aspect. For example, for the query “flights air new zealand sydney de-
partures”, the QAA identifies the four aspects “flights”, “air new zealand”,
“sydney”, and “departures” by checking the subsequences in the order
shown in table 6.2.

Table 6.2: The process used by the QAA to segment the query “flights air new

zealand sydney departures” into aspects.

Subsequence Aspect
flights air new zealand sydney departures No
flights air new zealand sydney No

air new zealand sydney departures No
flights air new zealand No

air new zealand sydney No
new zealand sydney departures No

flights air new No
air new zealand Yes

flights Yes
sydney departures No
sydney Yes

departures Yes
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6.6.2 Efficiency

Real-world implementations would pre-compute the aspects as part of the
indexing process, reducing each run-time subsequence check to an effi-
cient O(1) look-up. This section examines the practicality of pre-computing
the aspects and the subsequent runtime cost in real-world applications,
and finally explains the approach used in this thesis to deal with the query
limits imposed by search engines.

6.6.2.1 Pre-computing Aspects

The practicality of pre-computing the aspects depends on three factors:
the number of subsequences that need checking, the cost of checking if a
subsequence is an aspect, and the number of aspects that need storing.

Although the number of possible aspects is infinite (as every number is
a different aspect), in practice, the vast majority of the aspects are redun-
dant or are of no practical significance. For example, most numbers would
have nearly identical vocabulary and many aspects would occur in very
few or even no documents.

Wikipedia provides a practical lower bound on the number of aspects:
as of July 2010 there are 7.7 million pages and redirects in Wikipedia [193],
each of which can be reasonably expected to correspond to an aspect.
Google provides a practical upper bound: in their n-gram analysis of a
corpus containing more than one trillion tokens [67] they found 3.8 billion
subsequences of length one through five that occurred at least 40 times (ta-
ble 6.3). While any subsequence might be an aspect, even if some excluded
subsequences do correspond to semantically meaningful aspects, they are
of no practical significance because they occur so infrequently.

The cost of checking a subsequence depends on the cost of calculat-
ing DP (s) and D(s). Both are efficient O(1) look-ups as they can be pre-
computed. DP (s) would be pre-computed by traversing the corpus and
counting the frequency of every phrase of length 1 through n. In fact,
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Table 6.3: The number of distinct n-grams that appear at least 40 times in a

corpus containing over one trillion tokens [67]

Number
n-grams (millions)

Uni-grams 14
Bi-grams 315
Tri-grams 977

Four-grams 1,314
Five-grams 1,176

Total 3,796

Google’s n-gram analysis [67] did exactly this. D(s) would be pre-computed
by running queries to calculate the number of search results for each of the
3.8 billion subsequences identified as potential aspects by their frequency
(DP (s)). It may seem expensive to perform 3.8 billion queries, but Google
processed this number of queries every 32 hours in December 2009 [109].

While most, if not all, of the uni-grams are likely to be aspects, rela-
tively few of the bi-grams and tri-grams will be aspects, and very few of
the four-grams and five-grams are likely to be aspects. One reason for
this is that many n-grams include stop words and punctuation, which is
atypical of aspects.

To estimate the fraction that are aspects, I used the Yahoo Random Link
selector [196] to sample random pages from the web. I extracted approxi-
mately 2000 bi, tri, four, and five-grams from those pages, removed subse-
quences with a web frequency of less than 5005, and then manually iden-
tified those that were semantically meaningful aspects. The sample in-
cluded stop words, but unlike the n-gram corpus, it did not include punc-
tuation, so it likely over-estimates the probability of aspects.

5The higher cut-off compensates for the expectation that Google indexes far more than
the 1 trillion tokens used for the n-gram corpus.
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If aspect sequences occur less frequently than other sequences, the ran-
dom sample may underestimate their probability; therefore, I corrected
the estimates using the probability of each n-gram occurring on the web.
Table 6.4 shows the resulting probabilities and expected number of as-
pects. A look-up table containing approximately 40 million entries is very
practical and assuming a generous 25 bytes per entry, the table would eas-
ily fit in memory (1GB). Even in the worst case, 3.8 billion entries are quite
practical and could still fit in memory on a single server (95GB).

Table 6.4: The probability of n-grams being aspects and the expected number

of aspects on the web

Number
n-grams Probability (millions)

Uni-grams 100% 13.6
Bi-grams 3% 9.4
Tri-grams 0.75% 7.3

Four-grams 0.5% 6.6
Five-gramsa 0.25% 2.9

Total 39.9
a The probability of a five-gram being an aspect is an estimate because none of the

sampled five-grams were aspects.

6.6.2.2 Runtime Cost

With the aspects stored in a look-up table, the runtime cost of identify-
ing the query aspects depends on the number of subsequence checks per
query. In the worst case (when every aspect is a single word), the number
of subsequence checks is

∑n−1
i=n−na+1 i = (2n−na)(na−1)

2
, where n is the length

of the query and na is the minimum of n and the length of the longest as-
pect in the corpus. For example, 30 look-ups are needed for a query with
n = 10 words if the longest aspect has na = 5 words.
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Since most queries are short, the amortized average number of look-
ups is very small. Consequently, the amortized cost of identifying query
aspects is very low. Table 6.5 shows the number of look-ups required in
the worst-case, based on the distribution of queries in the AOL query logs
[139]. Even if there are aspects of length 10, on average only four O(1)
look-ups are required per query — in practice even fewer look-ups would
be required, because the performance is likely to be better than the worst
case and the maximum aspect length is likely to be limited to 5.

Table 6.5: The worst-case amortized average number of look-ups required per

query for various maximum aspect lengths

Max Length Average Look-ups
1 0.00
2 1.75
3 2.75
4 3.30
5 3.60
6 3.77
7 3.86
8 3.93
9 3.97
10 4.00

6.6.2.3 Experiments

For the experiments in this thesis, DP (s) and D(s) were obtained from
queries to Yahoo. Since the public search engines impose limits on the
number of queries performed, it is desirable to reduce the number of queries.
To this end, the experiments in this thesis check subsequences greedily
from left to right, smallest to largest, making the assumption that if an i-
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gram subsequence is not an aspect, then it cannot be extended to become
an (i + 1)-gram aspect. This reduces the number of queries required, but
also reduces accuracy. For example, “air new zealand” cannot be identified
because “air new” is not an aspect. Fortunately, aspects that violate this as-
sumption are rare, and consequently, the performance is almost as good as
it would be in a real-world implementation without this assumption.

6.6.3 Evaluation

The QAA aspect identification method was tested using the topic titles
of all 100 queries from the hard tracks of TREC 2003 [2] (50 queries) and
TREC 2005 [3] (50 queries). After removing non-aspect stop words and
manually identifying the semantically meaningful query aspects, the queries
had the characteristics shown in table 6.6. The following evaluation uses
the 97 queries of length two or greater and excludes the single word queries,
because they are obviously single aspect queries.

Table 6.6: A summary of the test set, which contains 100 queries from the TREC

2003 and TREC 2005 hard tracks

Query Number of Average Number
Length Queries of Aspects

1 3 1.00
2 47 1.64
3 43 2.26
4 5 2.60
5 2 4.50

The evaluation compares three different aspect identification methods:
Single, Wikipedia, and QAA. The Single method is the commonly used
method of treating each individual word as an aspect [128, 199]. The
Wikipedia method uses Wikipedia [194] as a dictionary and assumes a
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subsequence is an aspect if a page or redirect exists on Wikipedia for the
subsequence. The QAA method is as defined in section 6.6.1.

The evaluation removed the non-aspect stop words to improve the in-
terpretability of the results by focusing on the interesting aspect and non-
aspect instances and excluding the trivial non-aspect instances. For exam-
ple, the queries “The History of Nanotechnology” and “The Lord of the
Rings” would be transformed into “History Nanotechnology” and “The
Lord of the Rings”, removing the trivial non-aspects “the history”, “history
of”, and “of nanotechnology”, which all algorithms classified correctly.

6.6.3.1 Visual Comparison

Figure 6.4 shows a visual comparison of the three algorithms. Along the
x-axis are all the checked subsequences, ordered by the QAA subsequence
score, and along the y-axis are the three algorithms. Green indicates the al-
gorithm classified the subsequence correctly (non-aspect between 0.0 and
1.0 or aspect between 1.0 and 1200.0) and red indicates an incorrect classi-
fication (aspect between 0.0 and 1.0 or non-aspect between 1.0 and 1200.0).

Single

Wikipedia

QAA

0.50.0 1200.0

1.0
2.0

Figure 6.4: Correctly classified subsequences (green) and incorrectly classified

subsequences (red)

An interesting observation is that 44% of the errors made by the QAA
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occur between 0.5 and 2.0 (margin failures that occur in the region around
the arbitrary cut-off of 1.0). Examining this region more closely, the incor-
rect classifications between 0.5 and 1.0 generally had higher existence and
lower support than correct classifications in this region. Additionally, the
incorrect classifications between 1.0 and 2.0 generally had lower existence
and higher support than correct classifications in this region. This sug-
gests that parameter optimization and a richer classification model such
as a trained SVM could improve performance substantially.

As the Wikipedia method is independent of the QAA subsequence
score and its overall performance is comparable, the combination of the
two should improve performance. To test this, I considered a fourth method,
QAA+W, which is identical to the QAA method, except the subsequence
is checked using the Wikipedia method when the QAA subsequence score
is between 0.5 and 2.0.

6.6.3.2 Macro Analysis

Table 6.7 shows the percentage of queries where every aspect was iden-
tified correctly. The results show that overall QAA+W has better perfor-
mance than QAA, which has better performance than Wikipedia, which
has better performance than Single. However, only QAA+W is signifi-
cantly better than Wikipedia (p < 0.05), although all three algorithms are
significantly better than Single (p < 0.01). The difference on four and five
word queries is not significant as there are relatively few queries of that
length.

Table 6.8 shows the percentage of checked subsequences that the al-
gorithms classified correctly. Because the Single method never considers
any subsequence to be an aspect, it correctly classifies all non-aspect sub-
sequences, but incorrectly classifies all aspect subsequences. Wikipedia
is possibly the largest manually constructed dictionary and it is not sur-
prising that it performs well, but as expected, it failed on some subse-
quences because like all manual dictionary based approaches, it does not
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Table 6.7: The percentage of queries with all aspects classified correctly

Words Number Single Wikipedia QAA QAA+W
2 47 64% 83% 89% 94%
3 43 33% 74% 77% 84%
4 5 0% 80% 80% 60%a

5 2 50% 0% 0% 0%
All 97 46% 77% 81% 86%

a Wikipedia and QAA made mistakes with two different 4-grams and unfortunately,
QAA+W included both of them. However, because there are only five 4-grams, this
difference is not significant.

completely cover the ever-expanding set of aspects. The QAA did par-
ticularly well and although it is completely automatic, it actually outper-
formed Wikipedia (although not significantly). Again, QAA+W is signif-
icantly better than Wikipedia (p < 0.01) and all three algorithms are sig-
nificantly better than Single (p < 0.01). Additionally, QAA is significantly
better than Wikipedia (p < 0.05) at classifying the subsequences that are
aspects correctly.

6.6.3.3 Micro Analysis of Failures

Although QAA performs well, it could be even better. Under close ex-
amination, the failures of QAA can be grouped into four categories: mar-
gin failures (44%), stop word failures (6%), common word failures (22%),
and technical failures (28%). Section 6.6.3.1 has already discussed margin
failures, which occur between a subsequence score of 0.5 and 2.0. Stop
word failures cause the misclassification of valid aspects and occur when
the removed stop words were a defining part of an aspect, such as “of”
in “United States of America”. Common word failures cause the mis-
classification of non-aspects and occur when the frequency of the two as-
pects is very different, such as in “new hydroelectric” and “recent earth-
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Table 6.8: The percentage of subsequences classified correctly

Number Single Wikipedia QAA QAA+W
All 157 63% 85% 89% 92%

Grouped by Words
2 131 60% 85% 90% 92%
3 26 81% 81% 81% 88%

Grouped by Type
Aspects 58 0% 78% 88% 95%

Non-Aspects 99 100% 89% 89% 90%

quakes” where “new” and “recent” occur far more frequently than “hydro-
electric” and “earthquakes”. Technical failures cover the remaining errors
and these represent general algorithmic failures for which there was no
specific cause.

QAA+W demonstrated one way of addressing margin failures with
significant performance benefits; the next section outlines additional meth-
ods of addressing these failures of the QAA.

6.6.4 Future Improvements

There are several ways future research could address the four categories of
failure. Future research could improve subsequence scoring, classification,
and processing of stop words.

Term frequency correlates with the common word failures, suggesting
that additional subsequence scoring factors could be useful. Future re-
search could investigate a range of additional scoring factors to reduce the
number of common word and technical failures.

As the evaluation identified, multiplying existence and support loses
some information that would have been useful during classification. In-
stead of producing a tradeoff between existence and support, an imple-
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mentation could consider each factor separately and incorporate them into
a trained and optimized classifier such as a SVM. This would also be an
ideal way to incorporate any additional scoring factors. Future research
could investigate using an improved classification model to reduce the
number of margin and technical failures.

Stop words can identify aspect boundaries, for example, the stop words
“the” and “of” separate the aspects in the query “the history of nanotech-
nology”. Additionally, as in stop word failures, some aspects contain stop
words. Future research could improve the analysis of stop words and
identify these differing usages of stop words to reduce the number of stop
word and technical failures.

6.7 Aspect Model

This section describes how to identify an aspect’s vocabulary and how to
resolve aspect ambiguity, describes how the QAA constructs the vocabu-
lary model for an aspect, and describes how the QAA uses the vocabulary
model to score how well the result set focuses on each aspect. It then an-
alyzes the real-world efficiency of the QAA, evaluates the QAA’s perfor-
mance at predicting query difficulty, and identifies the QAA’s limitations.
As with the aspect identification method, there was no attempt to tune or
optimize the parameters.

6.7.1 Aspect Vocabulary, Queries, and Ambiguity

The QAA uses two main factors to select the terms for an aspect’s vocab-
ulary: the strength of association between a term and the aspect across
the whole corpus and the frequency of the term in the result sets of aspect
sub-queries.

An aspect’s vocabulary is the set of terms that are likely to occur when
discussing the aspect. For example, documents discussing “programming”
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are likely to use terms like “language”, “compiler”, and “object”. Conse-
quently, terms that frequently co-occur with an aspect across the whole
corpus are probably good candidates for an aspect’s vocabulary and the
frequency of co-occurrence would be a good measure of how closely they
are related.

The problem is that many terms that frequently co-occur with an as-
pect should not be in the aspect’s vocabulary. One example is stop words
(which should obviously be excluded), but there are others too. Across
the whole corpus, most documents that include the aspect’s term proba-
bly do not focus on the aspect; the words that co-occur with the aspect in
these documents should not affect the aspect’s vocabulary. Therefore, it
would be a bad idea to construct an aspect’s vocabulary solely based on
co-occurrence information.

The QAA assumes that the top-ranked documents for short single-
aspect queries are generally relevant. Consequently, the top-ranked doc-
uments from a sub-query6 for an individual aspect’s term are likely to fo-
cus on the aspect and probably include terms that belong in the aspect’s
vocabulary. The problem is that even if the original query was unambigu-
ous (e.g. “dealers car jaguar new”), on their own, some aspects may be
ambiguous (e.g. “jaguar”). Therefore, some of the top-ranked documents
from single aspect sub-queries may be irrelevant.

While individual aspects may be ambiguous, at least some aspect pairs
are probably unambiguous. Consequently, adding aspect pair sub-queries
will capture the context from the query and eliminate the ambiguity of
individual aspects. However, the contribution of aspect pair sub-queries
should be de-weighted to reduce the chance of introducing irrelevant terms.
For example, on its own, “jaguar” might have a weighted vocabulary model,
{(car, 0.5), (cat, 0.5)}, which includes some terms related to cars and other
terms related to cats. However, in the context of a query that also contains

6The query is called a sub-query because it contains a subset of the original query’s
aspects.
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the aspect “dealers”, the vocabulary model for the pair of aspects “jaguar”
and “dealers”, {(car, 0.5), (dealer, 0.5)}, contains information that can re-
solve the ambiguity. By combining the two models, the weighted vocab-
ulary model for “jaguar”, {(car, 0.5), (cat, 0.3), (dealer, 0.2)}, is no longer
ambiguous because the terms related to the relevant car interpretation are
reinforced.

6.7.2 Vocabulary Model

To construct vocabulary models for each aspect of a query, the QAA runs
sub-queries for all aspects and all pairs of aspects, and finds all the terms
that occur in the documents returned. For example, for the 3-aspect query
“flights air new zealand sydney”, the QAA runs 6 sub-queries “flights”,
“air new zealand”, “sydney”, “flights air new zealand”, “flights sydney”,
and “air new zealand sydney”. Note that the QAA does not use aspect pair
sub-queries for 2-aspect queries, because the sub-query would match the
original query. To identify the terms, the QAA splits the documents into
sentences based on punctuation and html tags, and then after trimming
leading and trailing stop words, treats all n-grams from each sentence as
terms.

For efficiency, the result set is limited to just the first 10 documents for
each sub-query. Retrieving more documents would improve the statis-
tics, but the measure would then need to weight the information from the
top-ranked documents more heavily because they are more likely to be
relevant, and consequently, more likely to focus on the query aspects.

For each aspect, the QAA ranks the terms (excluding stop words) ac-
cording to document frequency (the number of retrieved documents con-
taining the word from the sub-queries that contained the aspect), retaining
only the top 200 terms. Then, it ranks these 200 terms according to their
term weight, a function of the term’s strength of co-occurrence with the
aspect, retaining only the top 50 terms, which form the vocabulary model
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of the aspect.
The co-occurrence strength, CS(t, a), measures how strongly a term

t and an aspect a are related across the entire corpus. It is the ratio be-
tween the actual and the expected co-occurrence frequency of a term and
an aspect. The actual co-occurrence frequency, CFa(t, a), is the fraction of
documents that contain both the aspect and the term. The expected co-
occurrence frequency, CFe(t, a), is calculated by assuming that the aspect
and the term are independent and computing the product of the fraction
of documents that contain the aspect and the fraction of documents that
contain the term.

CFa(t, a) =
DP (t ∧ a)

D

CFe(t, a) =
DP (t)

D
· DP (a)

D

CS(t, a) =
CFa(t, a)

CFe(t, a)
=

DP (t ∧ a) ·D
DP (a) ·DP (t)

where DP (t ∧ a), DP (t), and DP (a) are the number of documents in the
corpus that contain the phrases for both term t and aspect a, the phrase for
term t, and the phrase for aspect a respectively. D is the total number of
documents in the corpus.

The term weight, w(t, a, q), measures how strongly a term t and an as-
pect a are related in the context of query q. It is the sum of the contribu-
tions to term t from the sub-queries of q. For sub-queries that contain a and
whose documents contain t, the contribution is the co-occurence strength
divided by the number of aspects in the sub-query. For other sub-queries,
the contribution is zero.

w(t, a, q) =
∑

q′∈sub-queries(q)

C(t, a, q′) · CS(t, a)

|q′|

where sub-queries(q) is the set of sub-queries for all aspects and all pairs of
aspects from q, C(t, a, q′) is 1 if q′ contains a and t is in at least one of its
documents, otherwise it is 0, and |q′| is the number of aspects in sub-query
q′.
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The vocabulary model, Vocab(a, q), reflects the terms most closely re-
lated to the aspect in the context of the query. It is a normalized weighted
vector of the 50 terms that have the highest term weight.

Vocab(a, q) =
{
{t1, w1}{t2, w2} · · · {t50, w50}

}
wi =

w(ti, a, q)∑50
j=1w(tj, a, q)

6.7.3 Aspect Representation

The QAA measures the quality or relevance of a query’s result set by using
the aspect vocabulary models to score how well the result set represents
or focuses on each aspect. The measure serves to identify underrepre-
sented aspects and because many hard queries suffer from underrepre-
sented query aspects (section 6.3.2), this measure should also serve as a
good predictor of query difficulty.

The raw aspect score, RAW (a, q), is the dot product of the weight
vector of the vocabulary model of aspect a and the term frequencies in
the documents of the result set for query q. The relative aspect scores,
RAS(a, q), are the raw aspect scores normalized so they sum to one, and
indicate the relative likelihood that aspects are underrepresented.

An aspect is considered underrepresented if its relative aspect score
is below a threshold, which depends on the number of aspects |q|. For
queries with two aspects, the threshold is 33%; for queries with three as-
pects, it is 25%.

RAS(a, q) <
1

|q|+ 1
−→ a is underrepresented

The query difficulty estimate,QD(q), is the difference between the thresh-
old and the relative aspect score of the least represented aspect. A query
difficulty estimate of less than 0 corresponds to an easy query with no un-
derrepresented aspects and an estimate of more than 0 corresponds to a
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hard query with underrepresented aspects.

QD(q) =
1

|q|+ 1
−min

a∈q
{RAS(a, q)}

For efficiency, the result set is limited to just the first 10 documents
when computing the raw aspect score. Retrieving more documents would
improve the statistics, but the measure would then need to weight the
information from the top-ranked documents more heavily as the relevance
of the top-ranked documents is the most important because users rarely
look beyond the first result page.

6.7.4 Efficiency

Real-world implementations would pre-compute as much information about
the vocabulary models as possible to reduce the runtime cost of scoring
result sets. This section examines what information applications could
pre-compute, the runtime cost in a real-world application, and finally the
implications of the storage medium on throughput.

Note that where necessary, the calculations in this section assume ev-
ery query word is an aspect (the worst-case) and that the distribution of
queries is the same as in the AOL query logs [139].

6.7.4.1 Pre-computing Vocabulary Models

The cost of computing the vocabulary model of an aspect depends on three
factors: the number of aspects in the query, the cost of finding the terms
and term frequencies from the sub-queries for aspects and aspect pairs,
and the cost of finding the co-occurrence strength between a term and an
aspect. The pre-computations should minimize these costs.

The number of query aspects is important, as queries with two aspects
are much easier to compute because there are no aspect pair sub-queries
to consider. Pre-computing the final vocabulary models for the Cartesian
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product of all aspects and all queries is completely impractical — the num-
ber of models is approximately 40,000,000 × 240,000,000 (the number of as-
pects multiplied by the number of queries, which is the size of the power
set of aspects). However, for two aspect queries, only 40 million vocabu-
lary models are required — one for each aspect. Assuming 300 bytes per
model (4 bytes per term and 2 bytes per normalized term weight), these
models could fit in memory on a single server (12GB).

By traversing the corpus, a real-world implementation would pre-compute
an index and an inverted index to minimize the cost of finding the terms
and term frequencies. The index would map documents to terms and
their frequencies in descending order of frequency and the inverted in-
dex would map aspects to documents and have approximately 40 million
entries. These steps are practical because search engines already perform
similar steps to create an inverted index of uni-grams to documents with
approximately 14 million entries.

With these indexes, finding the terms and term frequencies for an as-
pect sub-query is a simple O(1) look-up and finding them for all aspect
pair sub-queries is comparable to the cost of performing the original query.
The main cost of a query is the O(ql) intersection of the document lists,
which involves one scan through a document list of length l for each of q
query words. Finding the terms for n aspect pairs seemingly requires n
queries and should be O(nql). However, there are dependencies between
the aspect pairs and the original query. All the intersections for all n as-
pect pair sub-queries are already being performed in computing the in-
tersections for the original query; they are simply not being recorded. By
recording these intersections in parallel with the original query, the n sub-
queries are eliminated and the total cost is consequently comparable to the
single original query; specifically, it is still O(ql).

The cost of calculating the co-occurrence strength depends on the cost
of DP (t ∧ a), DP (t), and DP (a). All three can be pre-computed by one
traversal of the corpus and thereby reduced to O(1) look-ups. In fact,
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DP (t) and DP (a) were already pre-computed for aspect identification.7

However, DP (t∧ a) requires far more storage. Assuming each frequency8

consumes 2 bytes and the number of terms is equal to the number of as-
pects9, 3200TB of storage is required. Rather than storingDP (t∧a),DP (t),
andDP (a) separately, CS(t, a) would be computed and stored in the same
space. Hence, finding the co-occurrence strength is an O(1) look-up.

3200TB is a small amount of data for large search engines and could
even be stored in distributed memory (approximately 50,000 servers each
with 64GB of memory) — Google was estimated to have one million servers
in 2007 with 100,000 more being added every three months [138].

6.7.4.2 Runtime Cost

The aspect representation scores for queries with fewer than three aspects
are cheap to compute because they involve no aspect pairs and the vocab-
ulary models have been pre-computed. For queries with one aspect, there
is no cost because the sole aspect is by definition represented. For queries
with two aspects, there are two O(1) look-ups for the aspect vocabulary
models and two 50 element dot products (between the vocabulary models
and the result set). Consequently, as at least 55% of queries have fewer
than three aspects, the scores are cheap to compute at runtime for the ma-
jority of queries.

The scores for queries with three or more aspects are more expensive to
compute. However, they are still relatively cheap because real-world im-
plementations can deduce the most expensive information while running
the original query and the remaining information has been pre-computed.
A real-world implementation would identify the terms for each aspect
pair in parallel with the computation of the original query at negligible

7Both are subsets of DP (s) since both involve frequent subsequences.
8It would be better to store the log frequency.
9The set of terms is roughly equivalent to the set of aspects as both reflect meaningful

subsequences where stop words are atypical.
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cost. Having these, the cost of constructing the vocabulary model is low
because it involves performing simple operations on a very small set of
elements. Specifically, it involves aggregating the terms (the union of sev-
eral 200 element lists), finding the top 200 terms, calculating the weight for
200 terms, finding the top 50 terms, normalizing the weights of 50 terms,
and finally, computing several 50 element dot products.

6.7.4.3 Throughput

While calculating the term weights involves just 200 O(1) co-occurrence
strength look-ups, the throughput is limited by the seek time of the stor-
age medium. While this is no problem for implementations using dis-
tributed memory, it is problematic for implementations using traditional
hard drives.

Google performed almost 88 billion queries in December 2009 [109],
which is on average 33,000 per second10, or 12.6 million co-occurrence
strength look-ups per second. Using traditional hard drives that perform
100 random reads per second, 126,000 hard drives would be required —
far more than the 1600 2TB drives required to store the data. While 126,000
hard drives are still practical for large search engines and still less expen-
sive than an in-memory solution, it is not the optimal implementation un-
der either performance or financial constraints.

For performance, an in-memory solution is best and as of 2010, is just
six times more expensive than traditional hard drives. The in-memory
solution will support future growth and demand peaks for a very long
time, whereas the traditional hard drives can only cope with current de-
mand. Furthermore, most of the CPU time on 50,000 servers would be
available for other purposes — reducing the effective financial cost of the
in-memory solution.

For financial cost, 6400 512GB solid-state hard drives are best and as of
10However, searches are unlikely to be evenly distributed across time and peak usage

is probably even higher.
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2010, are half as expensive as the traditional hard drives. Using solid-state
hard drives that perform 20,000 random reads per second, the 6400 hard
drives have a throughput of 128 million look-ups per second — an order
of magnitude more than necessary and an order of magnitude more than
the much larger number of traditional hard drives. Furthermore, using
solid-state drives substantially reduces the ongoing cost for power and
cooling.

6.7.5 Evaluation

The QAA aspect model is evaluated by comparing its performance at pre-
dicting query difficulty against the Clarity measure (section 6.4.2.4). Per-
formance is measured by the correlation to the actual ranking using Kendall’s
τ , Spearman’s ρ, and Pearson’s Correlation. This section also compares the
rankings visually and against the optimal split of easy and hard queries.

Although the aspect identification method QAA+W performed better
than QAA, this and subsequent evaluations in this chapter use the aspects
identified by QAA.

6.7.5.1 Test Set

The experiments in this section and the later sections of this chapter used
a test set consisting of the fifteen queries shown in table 6.9 that originate
from the topic titles of TREC 2005 hard track queries [3]. Zhang et al. [206]
identified seven different categories of query in the TREC 2005 hard track;
the test set includes the first two or three topics (by topic number) from
each of the seven categories and provides a representative set of typical
web queries. The queries range in length from two to five words, have
between one and three aspects, and consist of both easy and hard queries.

My experiments calculated Precision using relevance judgements based
on the description and narrative from the TREC 2005 hard track. The de-
scription specifies the user’s search goal and the narrative gives specific
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Table 6.9: The test set of 15 queries used for evaluation

Query P@5 P@10
Abuses of Email 40% 40%
Airport Security 20% 40%
Antarctica Exploration 0% 0%
Automobile Recalls 0% 0%
Black Bear Attacks 80% 50%
Cult Lifestyles 0% 10%
Hubble Telescope Achievements 60% 50%
International Art Crime 0% 10%
Iran Iraq Cooperation 80% 70%
Marine Vegetation 0% 0%
New Hydroelectric Projects 60% 60%
Radio Waves and Brain Cancer 80% 70%
Three Gorges Project 80% 80%
Transportation Tunnel Disasters 20% 20%
Wildlife Extinction 40% 30%

details on what would be relevant and irrelevant documents.

6.7.5.2 Precision is not Difficulty

Precision is usually a good measure of query difficulty, but fails when the
query inaccurately reflects the user’s search goal. For example, the query
“car” is easy because it finds pages about cars, but if the user’s search
goal were to find trucks, then its Precision would incorrectly indicate it is
hard. Consequently, it is only valid to use Precision as a proxy for difficulty
when the query matches the user’s search goal.

Two queries in the test set, “Automobile Recalls” and “Antarctica Ex-
ploration”, suffer from this problem because they have missing aspects
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(section 2.3.3.2) and retrieve documents that are relevant to the query, but
irrelevant to the search goal. For example, “Antarctica Exploration” found
pages related to historic expeditions, but none related to current or fu-
ture expeditions (the search goal). Consequently, Precision incorrectly in-
dicates that “Antarctica Exploration” is a hard query, when it is actually an
easy query.

To resolve this problem, “Automobile Recalls” and “Antarctica Explo-
ration” were excluded from the test set for the query difficulty evaluation.
However, they are included in the evaluations later in this chapter where
Precision directly measures performance.

6.7.5.3 Clarity

Cronen-Townsend et al. [51] estimated P (w|Q) for the Clarity measure us-
ing Bayesian inversion with the word frequencies estimated by linearly
smoothing the collection frequencies with the word frequencies in a sam-
ple of 500 documents from the set of documents containing any individual
query term. While it is impractical to calculate Clarity over every word in
the corpus of public search engines, far more accurate estimates of P (w|Q)

can be computed using term frequencies11 from the entire corpus rather
than just a sample of 500 documents. In its comparisons with Clarity, this
thesis uses the more accurate estimates of P (w|Q), but rather than use all
the words in the corpus, it only uses the most informative terms (the most
frequent terms that are not stop words).

Table 6.10 shows the average of Kendall’s τ , Spearman’s ρ, and Pear-
son’s Correlation between Clarity and the actual ranking when using dif-
ferent numbers of informative terms to compute Clarity. The experiments
show that Clarity performs best using 20 terms and that adding addi-
tional terms may reduce its performance. Consequently, subsequent ex-
periments use 20 terms to compute Clarity.

11The term frequencies are found by issuing queries to public search engines.
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Table 6.10: The average correlation between Clarity and the actual ranking as

determined by P@5 and P@10

Correlation
Number of Terms P@5 P@10

10 0.246 0.149
20 0.279 0.159
30 0.264 0.152
40 0.266 0.143
50 0.244 0.118

6.7.5.4 Results

Table 6.11 shows the degree of correlation between the difficulty rankings
predicted by Clarity and the QAA and the actual rankings given by P@5
and P@10. It also shows the correlation between the rankings of P@5 and
P@10, which provides a measure of how accurately P@5 and P@10 reflect
the true difficulty ranking — if both reflected the true ranking, then P@5
and P@10 should correlate perfectly. In all cases and under all three mea-
sures of correlation, the QAA correlates with the actual rankings signifi-
cantly more than Clarity. That P@5 & P@10 are only slightly more corre-
lated than QAA & P@5 and QAA & P@10 suggests that the QAA is pre-
dicting query difficulty very accurately.

Since the test set contained six easy queries and seven hard queries, a
more balanced mix of query difficulties than typical test sets, the correla-
tions presented in table 6.11 should provide an accurate picture of how ef-
fectively the methods distinguish easy queries from hard queries. To con-
firm this hypothesis, figures 6.5 and 6.6 compare the predicted rankings
visually and figures 6.7 and 6.8 compare the predicted rankings against
the optimal split of easy and hard queries.

Figures 6.5 and 6.6 show the precision for each query in rank order.
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Figure 6.5: The predicted and actual rankings for P@5

Figure 6.6: The predicted and actual rankings for P@10
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Figure 6.7: Average P@5 of the six easiest and the seven hardest queries

according to the predicted and actual rankings.

Figure 6.8: Average P@10 of the six easiest and the seven hardest queries

according to the predicted and actual rankings.
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Table 6.11: Correlation between the predicted and actual rankings for Clarity

and the QAA

Kendall Spearman Pearson
Clarity & P@5 0.293 0.377 0.167
QAA & P@5 0.749 0.723 0.557

Clarity & P@10 0.173 0.226 0.079
QAA & P@10 0.824 0.782 0.632
P@5 & P@10 0.941 0.937 0.859

A method that made perfect difficulty predictions would be monotoni-
cally increasing and mirror the actual ranking shown in blue. Although
the QAA makes local ranking errors, it clearly separates easy queries from
hard queries. Figures 6.7 and 6.8 confirm this, showing that the QAA sep-
arates the easy and hard queries almost as well as the actual ranking.

6.7.6 Assumptions and Limitations

The QAA aspect model assumes all single aspect queries are easy. How-
ever, some single aspect queries may be hard. Future research could in-
vestigate how to predict the difficulty of individual aspects and how this
knowledge can improve multi-aspect models.

The QAA aspect model makes an independence assumption similar to
Naive Bayes, in that it treats the weightings from multi-aspect sub-queries
as independent of the weightings from single-aspect sub-queries. Perfor-
mance may improve by using a richer Bayesian model.

The QAA aspect model treats synonymous aspects as though they are
distinct. Performance may improve by modelling the relationships be-
tween query aspects.

The QAA aspect model treats sub-queries as sets of words, the same
way as in the original query. It is possible that performance would im-
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prove by treating the aspects as phrases in the sub-queries, because using
phrases would reduce ambiguity. However, using sets is more robust be-
cause it allows the aspect models to compensate for misclassified aspects.

6.8 AbraQ

The QAA is very powerful and can improve web search in numerous
ways. AbraQ is an automatic query expansion method that uses the QAA
to improve queries with underrepresented aspects.

This section identifies how to refine queries with underrepresented as-
pects, describes the implementation of AbraQ, analyzes its real-world effi-
ciency, evaluates its performance, and identifies its limitations and meth-
ods of addressing them. As with QAA, there was no attempt to tune or
optimize the parameters.

6.8.1 Refining Queries with Underrepresented Aspects

Constructing an effective query for a search goal involves finding a con-
junction of terms that occur together in documents that satisfy the search
goal. The terms must be both distinctive and discriminating: they must
occur in many of the desired documents, while not appearing together in
undesired documents.

Users typically have trouble refining queries with underrepresented
aspects because they often limit their choice of refinements to a small set
of descriptive terms that are not necessarily very discriminating. Search
experts fare better by also considering a larger set of semantically orthog-
onal keywords (section 2.3.5) that co-occur with the descriptive terms —
many of which are effective because they are both distinctive and discrim-
inating. However, it is incredibly hard for even search experts to identify
semantically orthogonal keywords, because users naturally think descrip-
tively.
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The QAA provides not only a mechanism for identifying queries with
underrepresented aspects, but also the necessary tools for refining them.
Finding an effective refinement involves two parts: identifying possible
refinement terms and measuring their effectiveness. The QAA vocabulary
models are a good source of semantically orthogonal keywords, and con-
sequently, candidate refinements, since they contain terms that co-occur
frequently with an aspect’s descriptive term. Although some refinement
terms from the vocabulary models of underrepresented aspects are likely
to be good refinements, others may cause query drift, decreasing perfor-
mance. The QAA aspect scores are a good way of measuring refinement
effectiveness, because good refinements should produce result sets with
no underrepresented aspects — underrepresented aspects are an indica-
tion of query drift.

A significant benefit of this QAA derived approach is that refinement
generation is independent of whether the original query retrieves relevant
documents. Consequently, this approach is applicable for even the hardest
queries that initially retrieve no relevant results.

6.8.2 Algorithm

AbraQ uses the QAA to identify the query aspects and to identify the un-
derrepresented aspects. If there are no underrepresented aspects or there
is only one query aspect, AbraQ makes no refinement and presents the
result set of the original query to the user. If there are underrepresented
aspects, AbraQ picks the aspect with the worst relative aspect score and
tries to improve the representation of that aspect.

The vocabulary models from the QAA use term weightings based on
the co-occurrence strength of the term with the aspect. AbraQ identifies
candidate refinement terms by selecting the N highest weighted terms
from the vocabulary model of the least represented aspect (the experi-
ments use N = 40). For each term, AbraQ constructs a new refinement
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query consisting of the old query plus the refinement term, runs the new
query, then re-computes all the aspect scores (as in QAA), but using the
result set of the refined query instead of the original query.

To score a refinement q′, AbraQ sums the new aspect scores, weighting
the previously underrepresented aspects more heavily.

RS(q′) =
∑
a∈A

RAW (a, q′)

RAS(a, q)

where A is the set of aspects in the original query and q is the original
query. AbraQ then presents the result set of the highest scoring query
refinement to the user.

6.8.3 Efficiency

The cost of AbraQ depends on two parts: the run-time components of the
QAA and the additional queries.

The run-time components of the QAA are insignificant compared to the
cost of the additional queries. Identifying the aspects of the original query
is very efficient as explained in section 6.6.2.2. Scoring the original query
is also very efficient, because it involves simple operations on what are
relatively very small sets (section 6.7.4.2) — specifically, the cost of scoring
is insignificant compared to the cost of a query. AbraQ must also score
the refinement queries, but these are even less expensive to score than the
original query, because there are correlations between the computations
required for the original query and the refinement queries.

The major cost of AbraQ is the 40 additional refinement queries. The
impact on search responsiveness is small because AbraQ can perform the
additional queries in parallel. While AbraQ enhanced queries will con-
sequently be no slower from the user’s perspective, additional hardware
will be required to process the same number of queries. However, the
amount of additional hardware required is somewhat less than might be
expected.
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For most queries, AbraQ does not need to perform any additional queries.
AbraQ performs no additional queries for the 35%12 of queries that con-
tain just one aspect because AbraQ terminates after identifying the query
aspects. AbraQ performs no additional queries for the 79%13 of queries
that are easy (search engines already perform well and the queries con-
sequently have no underrepresented aspects) because AbraQ terminates
after identifying there are no underrepresented aspects. However, AbraQ
must perform the additional queries for the 60%14 of hard queries that
have underrepresented aspects. Assuming all the single aspect queries
are easy, AbraQ performs the 40 additional queries for just 13% (60% ×
(100%− 79%)) of all queries.

The additional queries are less expensive than the average query. The
mean query length is approximately 2.75 words (section 2.2), and conse-
quently, the average query involves scanning 2.75 document lists. How-
ever, each additional query for AbraQ only involves scanning one addi-
tional document list, because there are correlations between the additional
queries. In total, the 40 additional queries involve scanning 41 additional
document lists (one for each additional query term and one for the result
of the original query) as compared to the 110 document lists required for
40 average queries.

Accounting for the frequency of underrepresented aspects and the re-
duced cost of the additional queries, the cost of AbraQ is very practical.
The amortized average cost per query of AbraQ is just two additional
queries ( 41

110
×13%×40). In practise, the cost would be even lower, because

the analysis does not account for the reduced need for users to refine hard
queries.

12based on my sample of 150 random queries from the AOL query logs (section 6.1)
13based on the AOL query logs (section 2.3.1)
14based on my sample of 30 random hard queries from the AOL query logs (section

6.3.2)
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6.8.4 Evaluation

I evaluated AbraQ using the non-interactive method of evaluating search
results as described in chapter 3. The evaluation used Google as both the
baseline search engine and corpus, used P@N to measure performance
(specifically, P@5 and P@10), and used Wilcoxon’s signed-rank test for
significance testing. Wilcoxon’s signed-rank test is a reliable non-parametric
hypothesis test for related samples that does not assume the population is
normally distributed — Zobel [210] found it superior to ANOVA and Stu-
dent’s t-test when measuring relative performance of search systems.

The 15 queries shown earlier in table 6.9 are used as the test set.15 It
is important that the test set include hard queries, because easy queries
already have good performance and do not require refinement. To this
end, the test set was selected from the hard track of TREC 2005, which
consists of hard queries that no TREC system was able to handle well in
previous years [3]. Surprisingly, Google found many relevant results for
six of the fifteen queries, confirming my hypothesis that Google is a strong
baseline. Of the nine hard queries, Google found no relevant results for
five of them and only a few relevant results for the other four.

The rest of this section compares AbraQ to the baseline Google, to a set
of automatic query expansion methods, and to a set of interactive query
expansion methods. Finally, it identifies the limitations of AbraQ.

6.8.4.1 Google

AbraQ expanded eight of the fifteen queries in the test set as shown in
table 6.12. AbraQ did not expand the remaining seven queries because it
determined that they did not contain any underrepresented aspects. Qual-
itatively, the expansion terms chosen by AbraQ appear similar to the se-

15except the results in section 6.8.4.2, which were collected before the rest using just 10
of the queries in table 6.9 — Abuses of Email, Antarctica Exploration, Automobile Recalls,
Iran Iraq Cooperation, and Wildlife Extinction were not included
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mantically orthogonal keywords that search experts would choose. For
example, the term “injury” is not directly related to “Transportation Tun-
nel Disasters”, but disasters typically result in injuries, so one would ex-
pect pages about “Transportation Tunnel Disasters” to include the term
“injury” if the disaster aspect were represented.

Table 6.12: AbraQ expanded eight of the fifteen queries in the test set

Query Expansion
Abuses of Email Violations
Airport Security Protection
Black Bear Attacks Victim
Cult Lifestyles Religion
International Art Crime Selling
Marine Vegetation Plant
Transportation Tunnel Disasters Injury
Wildlife Extinction Conservation

Figures 6.9 and 6.10 compare the performance of Google and AbraQ
using P@5 and P@10 respectively, for all queries, the queries expanded
by AbraQ, and the queries not expanded by AbraQ. The results show that
AbraQ improves the performance of hard queries, while not affecting the
easy queries. Specifically, the results show that AbraQ performs signifi-
cantly better (p ≤ 0.01) than Google under both P@5 and P@10.

The benefit of AbraQ for users is even greater than is initially apparent:
improving hard queries can mean the difference between satisfying the
search goal or not, whereas easy queries already have sufficient answers
and so the benefit of improving easy queries is less.
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Figure 6.9: Comparing AbraQ with Google using P@5 on all queries,

unexpanded queries, and expanded queries

Figure 6.10: Comparing AbraQ with Google using P@10 on all queries,

unexpanded queries, and expanded queries
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6.8.4.2 Automatic Query Expansion

AbraQ provides automatic query expansion (AQE), which means that it
directly presents the user with a result set and takes no input from the user
beyond their original query. I compared AbraQ against six different AQE
methods (strictly, Pseudo-Relevance Feedback methods). As is typical of
AQE methods [181], the three term ranking methods used were document
frequency (df), term frequency (tf), and term frequency inverse document
frequency (tf-idf). The two selection methods used to select the terms for
query expansion were the top term (1), and the disjunction of the top five
terms (5). This gave six methods (df1, df5, tf1, tf5, tf-idf1, and tf-idf5) for
AQE, all of which assume the top five documents are relevant.

Figure 6.11: Comparing AbraQ with Automatic Query Expansion methods and

Google using P@5 and P@10

While AQE methods are typically used to enhance recall and not preci-
sion [181], the overall effect on precision is usually slightly positive [128].
However, the results shown in figure 6.11 disagree and show that tradi-
tional AQE methods have a slightly negative impact on precision.



308 CHAPTER 6. QUERY ASPECT APPROACH

The composition of the test set and the baseline search engine explain
the disagreement between the results. The test set consisted of an unusu-
ally large number of hard queries and it is well established [128, 199] that
traditional AQE methods fail on hard queries. The underlying search en-
gine, Google, is a very strong baseline that probably implements an equiv-
alent to traditional AQE. In general, the effects of search improvements
are neither additive nor independent, and consequently, methods that im-
prove weak baselines may hurt strong baselines [7]. This reinforces the
significance of using strong baseline systems to evaluate performance.

Added to strong baseline systems like Google, at best, the traditional
AQE methods have little effect on precision and may reduce it. In con-
trast, AbraQ provided substantial improvement to many queries without
decreasing performance of any others. There is no significant difference
between Google and any of the six traditional AQE methods, but AbraQ
was significantly better (p ≤ 0.01) than Google and each of the other six
methods under both P@5 and P@10.

6.8.4.3 Interactive Query Expansion

There are many term selection methods (section 6.2.2) that are superior to
those used by traditional AQE methods. However, unlike AbraQ, they
are interactive query expansion (IQE) methods that depend on collecting
additional information from the user. Consequently, IQE methods do not
compete with AbraQ and search engines could use them in concert with
AbraQ to solve other types of problematic query (section 2.3.3).

The IQE methods represent something akin to an upper bound on term
selection — AbraQ would be doing well to approach the performance of
methods that have the added advantage of user input. This section com-
pares AbraQ to the one-step refinement performance of a representative
range of IQE methods that includes clustering, query log analysis, rele-
vance feedback, and pseudo-relevance feedback methods.
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Methods

AbraQ was compared against three of the most successful clustering ap-
proaches — Suffix Tree Clustering (STC) [201], Lingo [137], and Query
Directed Clustering (QDC) — as well as a Query Log Analysis method
(Mamma), a relevance feedback method (RAQE), a pseudo-relevance feed-
back method (PRIQE), and an interactive variation of AbraQ (Optimal).

Clustering methods group similar documents from the result set to-
gether to form different refinements. STC and Lingo use phrases to form
clusters and QDC (the clustering algorithm introduced in chapter 5) uses
the relationship between words and the query to form clusters. The eval-
uation limited the methods to producing a maximum of 15 clusters.

Query Log Analysis methods use large query logs to suggest possible
refinements. The Mamma search engine [117] suggests a number of refine-
ments alongside the search results of each query based on query log anal-
ysis. The refinements are comparable to Google’s subsequently released
related search feature (section 2.6.2).

Relevance Feedback methods are similar to AQE methods, but rather
than assuming the top N documents are relevant, they require the user to
specify which documents in the initial result set are relevant. RAQE has
the user specify the relevant documents in the top 10, then ranks (using
tf-idf) the terms that occur in the relevant documents that do not occur in
irrelevant documents, and finally, selects the best term for refinement.

Pseudo-Relevance Feedback methods are identical to AQE methods,
but instead of automatically applying the top ranked term, they present
the top ranked terms to the user and require the user to choose the best
one. PRIQE presents the user with the top 15 terms according to tf-idf.

Optimal (an interactive variation of AbraQ) presents the user with the
top 15 terms according to the AbraQ refinement score.
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Results

For each IQE method, the evaluation assumed the user is perfect and that
they select optimally from the refinement suggestions or correctly choose
to make no refinement. This is an optimistic assumption that will credit
the IQE methods with a higher score than would be achieved in practice.
Magennis and van Rijsbergen [114] found that from the perspective of re-
call enhancement, while user selections improve performance, they failed
to reach the optimal performance and in general performed worse than
even AQE techniques. Users are unlikely to fare better at selecting pre-
cision enhancing refinements and therefore, the relative performance of
AbraQ would be better in practice than this evaluation suggests.

Figure 6.12 shows the results for AbraQ, Google, and all IQE methods
averaged over all 15 queries in the test set. Figures 6.14 and 6.13 show the
results averaged over the queries that were and that were not expanded
by AbraQ respectively.

Figure 6.12: Comparing AbraQ with Interactive Query Expansion methods and

Google on all queries using P@5 and P@10
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Figure 6.13: Comparing AbraQ with Interactive Query Expansion methods and

Google on expanded queries using P@5 and P@10

Figure 6.14: Comparing AbraQ with Interactive Query Expansion methods and

Google on unexpanded queries using P@5 and P@10
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The results show that AbraQ performs well against methods that ex-
ploit further user input even when they receive the best possible input.
Additionally, Optimal outperforms all other methods, even on the queries
AbraQ did not expand. This suggests that the QAA derived term selection
method used by AbraQ is more broadly applicable than just underrepre-
sented query aspects.

Broadly, the methods divide into three distinct groups according to
their relative performance. Group 1 contains Google, Mamma, STC, and
RAQE, group 2 contains PRIQE, AbraQ, Lingo, and QDC, and group 3
contains Optimal. In general, there was no significant difference between
any intra-group pair and most members of groups 2 and 3 are significantly
better than each member of the earlier groups. Table 6.13 shows the results
of the statistical significance tests.

The results also provide further evidence that QDC (chapter 5) is a
good clustering algorithm. With the exception of Optimal, QDC outper-
formed all other algorithms — although the improvement was only sig-
nificant when compared to Google, Mamma, and STC on P@5 and P@10,
and RAQE on P@5. These results suggest that even though QDC is de-
signed for easy ambiguous queries, it performs at least as well as other
good clustering algorithms and other IQE approaches on queries outside
its purview.

6.8.4.4 Limitations

While AbraQ performed particularly well, it did make some mistakes.
However, for the most part, the robustness of the QAA limited the impact
of these failures.

Aspect Identification

AbraQ incorrectly identified the aspects in two queries, “New Hydroelec-
tric Projects” and “Three Gorges Project”. However, AbraQ correctly iden-



6.8. ABRAQ 313

Table 6.13: The statistical significance of one algorithm’s improvement over

another. Each value indicates whether the row algorithm significantly

outperforms the column algorithm and if so, the corresponding p-value,

p ≤ 0.01 or p ≤ 0.05.
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tified both as easy queries and did not expand them. Had the QAA vo-
cabulary models been less robust (e.g. by using phrases as opposed to
sets of words as discussed in section 6.7.6), AbraQ may have incorrectly
expanded these queries.

Underrepresented Aspects

AbraQ failed to correct the underrepresented aspects in two queries, “Cult
Lifestyles” and “International Art Crime”. Although AbraQ improved
performance for both queries, it did not improve performance much —
AbraQ found only one or two more documents that are relevant in the top
10 than Google.

For “Cult Lifestyles”, AbraQ identified the “Lifestyles” aspect as un-
derrepresented when both aspects were actually underrepresented. The
problem is that AbraQ and the QAA use relative, rather than absolute val-
ues to measure representation. Consequently, when a result set equally
underrepresents all aspects, AbraQ may incorrectly consider them repre-
sented.

For “International Art Crime”, AbraQ identified the “Art” aspect as un-
derrepresented when different documents actually represented different
subsets of the aspects. The problem is that AbraQ and the QAA measure
the aggregate representation across the result set, rather than the repre-
sentation in individual documents. Consequently, even though individual
documents represent only a subset of the aspects, AbraQ may incorrectly
consider all aspects represented.

Expanded and Unexpanded Queries

AbraQ expanded eight of the fifteen queries in the test set, improving the
precision of seven of them within the first five results and improving all
eight within the first ten results. Five of the seven unexpanded queries
were those for which Google provided good initial results and seven of
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the eight expanded queries were those for which Google provided poor
initial results.

The two hard queries that were not expanded were “Automobile Re-
calls” and “Antarctica Exploration”. As discussed in section 6.7.5.2, these
queries have low precision because they have missing aspects (a problem
that AbraQ does not attempt to address). Since these queries do not have
any underrepresented aspects, it is correct for AbraQ to leave them unex-
panded.

The easy query that AbraQ incorrectly expanded was “Black Bear At-
tacks”, the problem being that it was incorrectly identified as having un-
derrepresented aspects. However, in the first five results performance was
not affected and in the first ten results performance improved very slightly.
This was expected, because when aspects are already represented, AbraQ
effectively selects terms that are similar to those selected by traditional
AQE methods, which have negligible effect on performance as discussed
in section 6.8.4.2. However, the improvement of Optimal over IQE meth-
ods for easy queries suggests that even in these failure cases, AbraQ prob-
ably selects better terms than traditional AQE methods.

On a larger set of queries with more failures, at worst, the performance
in the failure cases is likely to mirror that of traditional AQE methods.
Specifically, most queries would be unaffected (slightly positive or slightly
negative), but a few would suffer query drift and have significantly lower
performance. The key advantage of AbraQ is that the number of failures is
very small because the QAA does a very good job of distinguishing hard
queries (where AbraQ performs well) from easy queries (where AbraQ
sometimes performs less well).

6.8.5 Future Improvements

Future research could address the limitations of AbraQ by improving how
the QAA measures underrepresented aspects. By using an absolute, rather
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than relative measure of representation, AbraQ could correctly identify
when result sets equally underrepresent all aspects. By measuring rep-
resentation at the level of individual documents, AbraQ could correctly
identify when individual documents represent only a subset of aspects,
even when in aggregate they cover all aspects. These improvements would
also be beneficial to QAA and improve performance of other QAA derived
applications such as query difficulty prediction.

AbraQ focuses on term selection and my experiments ran atop Google,
but like other AQE methods, AbraQ could benefit from integrating with
search engines at a lower level. Specifically, AbraQ could add additional
expansion terms and use the vector space model to weight the relative im-
portance of different query terms — these additions should make AbraQ
more robust and improve performance.

6.9 Qasp

Another application of the QAA is Qasp, an interactive query expansion
(IQE) method that uses the QAA to suggest refinements for hard ambigu-
ous queries.

This section identifies how to refine hard ambiguous queries, describes
the implementation of Qasp, describes some usability enhancements to
Qasp, analyses its real-world efficiency, evaluates its performance, and
identifies its limitations and methods of addressing them. As with QAA,
there was no attempt to tune or optimize the parameters.

6.9.1 Refining Hard Ambiguous Queries

Hard ambiguous queries typically involve multiple aspects and are trou-
blesome for users to refine for the same reasons it is hard for users to refine
queries with underrepresented aspects (section 6.8.1). Existing IQE meth-
ods such as clustering can suggest useful refinements when the result set
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contains some relevant documents and work well when the vocabulary of
the different interpretations is distinct. However, hard ambiguous queries
may not retrieve any relevant documents and the vocabulary of different
interpretations can be similar.

Finding effective refinements for hard ambiguous queries is very sim-
ilar to finding effective refinements for queries with underrepresented as-
pects. As with AbraQ, the QAA provides a mechanism for finding ef-
fective refinements that is independent of the original query’s result set.
This mechanism is equally suited to finding refinements for hard ambigu-
ous queries, because it does not depend on the result set containing rel-
evant documents, nor does it depend on the vocabulary of the different
interpretations being distinct. Additionally, the quality of refinements for
hard ambiguous queries can be scored in the same way as refinements for
queries with underrepresented aspects, as in both cases, good refinements
should produce result sets with no underrepresented aspects.

The challenge is distinguishing the refinements for one query interpre-
tation from another. When the query is ambiguous, the refinements are
only useful when at least one corresponds to the user’s search goal. By
finding a diverse range of good quality refinements, rather than just the
set of individually best refinements, the refinements have a higher proba-
bility of being useful.

When refinements correspond to different query interpretations, their
result sets will differ. Consequently, maximizing refinement diversity in-
volves minimizing the similarity of their result sets. The simplest measure
of result set similarity is the size of their intersection. However, the docu-
ments in two result sets may be completely different and yet still have very
similar content, and consequently, relate to the same search goal. There-
fore, a good measure of result set similarity should consider the document
content and not merely the documents.
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6.9.2 Algorithm

Qasp uses the QAA to identify the query aspects and their associated vo-
cabulary. Like AbraQ, Qasp selects N candidate refinements from the as-
pect vocabularies, but rather than only selecting from the vocabulary of
the most underrepresented aspect, it considers the higher weighted terms
from each aspect’s vocabulary. However, since hard ambiguity and under-
represented aspects are not mutually exclusive, the number of terms taken
from each aspect, N(a), is proportional to the relative likelihood that the
aspect is underrepresented. Like AbraQ, the experiments use N = 40 can-
didate refinements.

N(a) = N ·
1

RAS(a,q)∑
a′∈q

1
RAS(a′,q)

For example, if a query contained three aspects with relative aspect scores
of 0.5, 0.3, and 0.2, then Qasp would select 8 terms from the most rep-
resented aspect, 13 terms from the second aspect, and 19 terms from the
most underrepreseted aspect.

Qasp uses a greedy approach to select the set of refinements to show
the user. At each step, Qasp selects the refinement with the highest com-
bined score, Score(r). The experiments stopped after selecting 15 refine-
ments — in line with the AbraQ IQE experiments (section 6.8.4.3).

Score(r) =
RS(r)

argmaxr′∈R{sim(r, r′)}

where RS(r) is AbraQ’s refinement scoring function, R is the set of pre-
viously selected refinements, and sim(r, r′) measures the similarity of the
result sets of the refinements.

Qasp measures the similarity of two result sets, sim(r, r′), using the
cosine similarity [14], cos(t1, t2), between the term vectors t1 and t2 for the
documents in each result set.

cos(t1, t2) =
t1 • t2
|t1||t2|
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Qasp weights the term vectors by tf-idf and removes stop words. Ad-
ditionally, to focus on the differences due to query ambiguity, Qasp also
removes terms that are stop words in the context of the query. Specifically,
Qasp removes from the term vectors all terms that occur in more than two
thirds (26) of the refinement result sets.

6.9.3 Usability Enhancements

When queries are ambiguous, users must provide further information about
the intent of their search goal. IQE may elicit their intent, but when the
query is non-ambiguous it is bothersome to ask the user for unnecessary
information and the user is prone to making mistakes [140]. Therefore, the
system should only request such information when it is essential. Qasp
achieves this by measuring the homogeneity of the refinement result sets.

To measure the homogeneity of a set of refinements, Qasp clusters the
refinements. It clusters them using an average-link agglomerative cluster-
ing algorithm [14] (section 5.2.3) that terminates when the cluster cohesion
of a newly merged cluster would be less than the product of the cluster co-
hesion of its component clusters. Qasp defines cluster cohesion as the av-
erage similarity between the cluster’s candidate refinements and defines
the average similarity for singleton clusters as the maximum similarity be-
tween the refinement and any other candidate refinement. When there is
only one cluster, Qasp considers the refinements homogeneous and when
there are multiple clusters, it considers the refinements heterogeneous.

When the set of refinements is homogeneous, there is no ambiguity
and no need for user input. If QAA considers all aspects represented,
Qasp does not suggest or apply any refinements. When QAA considers an
aspect underrepresented, Qasp automatically applies the best refinement
and performs comparably to AbraQ (close to optimal). Automatically ap-
plying the expected best refinement is justified, because users typically fail
to make optimal decisions and typically perform worse than AQE tech-
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niques [114].

When the set of refinements is heterogeneous, there is ambiguity and
user input is necessary. Therefore, Qasp presents the refinements to the
user. When displayed, Qasp shows the refinements in groups based on
the refinement clusters, but applies an additional threshold to stop the
clustering earlier. Specifically, clustering is terminated when cluster cohe-
sion falls below 20%. This stopping criterion keeps the refinements within
a cluster closely related, so users can understand the effect of all refine-
ments in a cluster after viewing the results of a single refinement from the
cluster.

As further extensions to the clustering, Qasp orders the refinements
and links them with query aspects. To help users identify the best refine-
ments in each cluster, Qasp orders the refinements in each cluster by their
expected quality, as measured by the refinement score (RS(r)). To help
users understand the refinements, Qasp specifies the aspect from whose
vocabulary model the refinement originated alongside each refinement.

6.9.4 Efficiency

The amortized cost of AbraQ was low because relatively few queries had
underrepresented aspects. Qasp is more expensive because it applies to all
multi-aspect queries, which constitute 65% of all queries (section 6.8.3). As
with AbraQ, the correlations between the additional queries reduce their
cost and the amortized average cost per query of Qasp is ten additional
queries ( 41

110
× 65%× 40).

Applying clustering to enhance usability further increases the cost of
Qasp and agglomerative clustering algorithms in particular are quite ex-
pensive (O(n2 log n)). However, Qasp only needs to cluster a small number
of refinements (15), and consequently, clustering is a relatively small part
of Qasp’s total cost.
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6.9.5 Evaluation

Qasp consists of two parts: the core algorithm that selects a diverse range
of refinements and the usability enhancements that help users understand
the effect of different refinements. I evaluated the core algorithm both
quantitatively and qualitatively and evaluated the usability enhancements
qualitatively.

Firstly, this section evaluates Qasp’s core algorithm. Then it evaluates
the effectiveness of Qasp’s automatic refinement of unambiguous queries,
its clustering of refinements, and its two extensions to clustering. Finally,
it identifies the limitations of Qasp.

6.9.5.1 Core Algorithm

Qasp selects a diverse range of refinements, expecting this to improve per-
formance by increasing the probability of finding refinements close to the
user’s search goal. The quantitative evaluation substantiates this expecta-
tion and shows that selecting a diverse range of refinements is superior to
selecting the individually best refinements.

The quantitative evaluation of Qasp mirrored the approach used with
the IQE methods in the evaluation of AbraQ (section 6.8.4.3). Figure 6.15
shows a comparison of Qasp’s core algorithm (excluding usability en-
hancements) against Optimal from section 6.8.4.3, a method that merely
selected the individually best refinements. Qasp improves on Optimal
by a significant (p ≤ 0.01) margin of 11% under P@10, and by a smaller
and insignificant margin of 7% under P@5. Qasp was also significantly
(p ≤ 0.01) better than all other evaluated methods (Google, AbraQ, STC,
Lingo, QDC, Mamma, RAQE, PRIQE) under both P@5 and P@10.

Of the fifteen queries in the test set, five were unambiguous16 and ten
were ambiguous. Qasp identified a more diverse set of refinements for

16These may actually be ambiguous and have more than one meaningful interpreta-
tion, but none of the expansion methods identified them.
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Figure 6.15: Comparing Qasp (diverse refinements) with Optimal AbraQ

(individually best refinements) using P@5 and P@10

the ten ambiguous queries than any other IQE method. Table 6.14 shows
the query interpretations that correspond to the refinements identified
by Qasp and Lingo for the ten ambiguous queries. At best, other IQE
methods performed comparably to Lingo, but generally performed worse
(identified fewer distinct refinements).

Lingo and the other IQE methods typically found a set of closely re-
lated refinements that principally correspond to a single query interpre-
tation. Specifically, Lingo found just 1 interpretation for 5 queries, 2 in-
terpretations for 4 queries, and 3 interpretations for only 1 query. In con-
trast, Qasp generally found refinements covering a much wider range of
interpretations. Specifically, Qasp found 1 interpretation for just 1 query,
2 interpretations for 3 queries, 3 interpretations for 5 queries, and 5 inter-
pretations for 1 query.

The primary difference is that Lingo and the other IQE methods only
found interpretations that occurred frequently in the original result set and
often found only the most popular or most dominant interpretation. In
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Table 6.14: Different query interpretations identified by Qasp’s and Lingo’s

refinements. Those highlighted in red are common to both.

Query Qasp’s Interpretations
• Abuses of Email Crime, News, Prevention
• Airport Security Computer Device, Cost, Procedures
• Antarctica Exploration Climate Change, Fiction, Geography,

History, Space
• Automobile Recalls Cost, Motorcycle, Vehicle
• Black Bear Attacks Incidents, Survival
• Cult Lifestyles Religion
•Marine Vegetation Harvesting, Plants, Research
• Radio Waves and Mobile Phones, Treatment

Brain Cancer
• Three Gorges Project Dam, Resettlement, Tourism
•Wildlife Extinction Causes, Conservation

Query Lingo’s Interpretations
• Abuses of Email Prevention
• Airport Security Jobs, Procedures
• Antarctica Exploration History
• Automobile Recalls Vehicle
• Black Bear Attacks Incidents, Survival
• Cult Lifestyles Marketing, Religion
•Marine Vegetation Conservation, Plants, Research
• Radio Waves and Mobile Phones

Brain Cancer
• Three Gorges Project Dam, Resettlement
•Wildlife Extinction News
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contrast, Qasp, identified interpretations that were rare in the original re-
sult set or even completely absent from it — this is a result of Qasp using
the QAA to select terms independently of the original result set. For exam-
ple, only Qasp identified refinements such as “safari”17 that correspond to
a relatively rare interpretation of “Airport Security” — the security of Ap-
ple’s wireless networking device named Airport.

Lingo and the other IQE methods (except Optimal) typically found
many refinements that were irrelevant in the context of the query. For ex-
ample, for “Black Bear Attacks”, Lingo found 1 refinement related to sur-
viving attacks, 3 refinements related to attack incidents, and 11 irrelevant
refinements that primarily retrieved documents containing general infor-
mation about bears where the “attacks” aspect was underrepresented. In
contrast, Qasp found 5 refinements related to surviving attacks, 7 related
to attack incidents, and 3 irrelevant refinements. Qasp and Optimal per-
form better because they consider aspect representation by using the QAA
to score refinements.

Although Qasp found a much more diverse range of refinements than
other IQE methods, the range is not exhaustive. However, the range does
capture a useful cross-section of the most popular interpretations. For
example, Climate Change was a relatively hot topic during the experi-
ments. The most popular interpretations are captured because the vocab-
ulary models are derived from terms in top ranked documents for each
aspect, which themselves are dominated by the most popular interpreta-
tions because of the way search engines typically rank documents (section
2.5.3).

6.9.5.2 Usability - Automatic Refinement

Users have trouble choosing good refinements. Qasp can save the user
effort and confusion when the query is unambiguous by automatically
applying the best refinement.

17the name of Apple’s web browser
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For queries with underrepresented aspects that are unambiguous (only
one cluster), Qasp saves the user effort by automatically applying the best
refinement. This occurred with two queries “International Art Crime” and
“Transportation Tunnel Disasters”. In both cases Qasp selected good re-
finements that improved performance against Google. However, an even
larger improvement was possible if the user selected optimally from Qasp’s
refinements.

For other queries that are unambiguous, Qasp avoids confusing the
user by presenting no refinements and leaving the query unaltered. This
occurred with three queries “Hubble Telescope Achievements”, “Iran Iraq
Cooperation”, and “New Hydroelectric Projects”. Google already had good
performance for all of these queries, but the user could have improved
performance if they selected optimally from Qasp’s refinements.

By applying refinements automatically or choosing to show the origi-
nal result set, Qasp potentially leaves performance on the table. However,
the user’s decision is simplified and users would probably struggle to se-
lect the best refinements in these cases. An interactive user-study would
be required to determine the best action (automatically apply refinement
or present refinements to user) in these cases.

6.9.5.3 Usability - Clustering

Users may perform poorly when selecting refinements because they do
not understand their effect. Good refinement terms are often quite obscure
and may require the user to possess substantial domain knowledge before
understanding their effect. An advantage of Qasp is that it helps users
interpret and choose the best refinements by grouping the refinements into
clusters.

Qasp successfully identified the unambiguous queries by grouping all
their refinements into one cluster — this is what occurred with the five
queries in section 6.9.5.2. If Qasp presented the refinements for these un-
ambiguous queries to users, they would benefit from seeing them grouped



326 CHAPTER 6. QUERY ASPECT APPROACH

into one cluster. Specifically, the user would learn that their query was
unambiguous and this would help them interpret the results and refine-
ments.

Qasp successfully identified the ambiguous queries by grouping their
refinements into multiple clusters. This occurred with the ten queries
shown in table 6.14.18 Generally, each cluster of refinements corresponded
to a different query interpretation from table 6.14 and the result sets of
each refinement within a cluster corresponded to the same interpretation.

The primary benefit of clustering was discoverability. The clustering
allows users to distinguish different categories of refinement and to use
recognized associations with one refinement as a basis for exploring re-
lated refinements that they would have otherwise felt were irrelevant. For
example, Qasp grouped the refinements “safari” and “news”19 into one
cluster for the query “Airport Security”. Users looking for Apple’s Air-
port device may identify with “safari” because it is the name of Apple’s
browser, but would normally overlook “news” and consider it an irrele-
vant outlier. By grouping them together, the user learns that the “news”
refinement also corresponds to their search goal. Consequently, cluster-
ing is probably most useful for hard ambiguous queries where many of
the best refinements initially seem irrelevant to users, because the best re-
finements are often not descriptive and simply co-occur with other more
descriptive terms.

The most common problem with Qasp’s clustering was that it stopped
too soon — different clusters that relate to the same interpretation still
need joining. This suggests that Qasp’s stopping criterion needs improve-
ment. However, further clustering using Qasp’s agglomerative algorithm
would have joined unrelated interpretations, suggesting the algorithm needs
improvement and not just its stopping criterion.

18Qasp identified more than one cluster for “Cult Lifestyles”, but only one contained
relevant refinements, and consequently, table 6.14 shows only one interpretation.

19The Apple Airport device was prominent in news articles at the time of the experi-
ments.
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Overall, clustering appeared to be useful and its application to help-
ing users discover and understand refinements warrants further investi-
gation.

6.9.5.4 Usability - Clustering Extensions

Qasp extended the clustering in two ways: by ordering the refinements to
help users identify the best refinements and by linking refinements with
aspects to help users understand them. However, neither proved particu-
larly useful.

Ordering the refinements within a cluster by their refinement score ap-
peared to have no benefit. This should have been expected, because as
identified in section 6.7.5.4, the QAA is good at ranking refinements at
the macro-level (distinguishing good from bad), but worse at ranking re-
finements at a micro-scale (correctly ranking two good queries or two bad
queries). In general, all the refinements within a cluster are good (or in
the case of clusters for irrelevant refinements, all bad), and consequently,
ranking them using their refinement score is not particularly useful.

Qasp associated each refinement with the aspect from which Qasp de-
rived it. This was helpful in understanding why Qasp retrieved some irrel-
evant refinements. For example, the association with the “Recalls” aspect
helped identify that the irrelevant “recipes” refinement for “Automobile
Recalls” was the result of documents about food recalls being used to form
the vocabulary of the “Recalls” aspect. However, the associations did not
appear to aid the selection of appropriate refinements, and consequently,
this feature is probably not useful for end-users.

6.9.5.5 Limitations

Like other IQE approaches, Qasp finds irrelevant refinements and its re-
finement descriptions are often inadequate.

Qasp finds fewer irrelevant refinements than other IQE methods, but
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finds more than Optimal. However, unlike other IQE methods, it usu-
ally groups those it finds into distinct clusters, making it easier for users
to identify them — other IQE methods intermingle relevant and irrelevant
refinements making it hard for users to distinguish them. Qasp finds more
irrelevant refinements than Optimal, because its diverse selection strategy
tends to include more outliers, but this is exactly what enables Qasp to
find a more diverse range of refinement interpretations. In practice, this
tradeoff is suited to their respective applications, because AbraQ (the ap-
plication of Optimal’s refinements) needs consistency and robustness to
make good refinements automatically, whereas Qasp is more tolerant of
errors because the user can simply dismiss them.

To choose the best refinement, users need to understand the effect of
different refinements. Qasp helps in this regard by grouping similar re-
finements together, but sometimes none of a cluster’s refinements is self-
explanatory — users have to try the refinements and examine their result
sets to understand their effect. This is particularly problematic for hard
ambiguous queries, where good refinements are often obscure because
they merely co-occur with other query terms in relevant documents.

6.9.6 Future Improvements

While Qasp performed very well, there is room for improvement. Direc-
tions for improvement include improving the clustering algorithm (as dis-
cussed in section 6.9.5.3), limiting the inclusion of irrelevant refinements,
and building useful descriptions of clusters.

Qasp finds irrelevant refinements because it seeks a diverse range of
refinements. However, when clustered, many of these irrelevant refine-
ments were in singleton clusters, whereas the relevant refinements were
typically in larger clusters. Future research could investigate whether ex-
cluding singleton clusters or more generally small clusters would improve
the set of refinements. It could also investigate clustering a larger number
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of candidate refinements, even if not ultimately shown to users, because
this would increase the evidence available for filtering.

Refinements are only useful when users understand their effect. Fu-
ture research could investigate methods of building cluster descriptions to
guide the user. One method would be to show a subset of the most dis-
tinct vocabulary contained in the result sets of a cluster’s refinements. This
could be improved by selecting terms that are closely related to the orig-
inal query, and consequently, perhaps more descriptive and meaningful
to users. For example, for the cluster containing “news” and “safari” for
“Airport Security”, the description might include terms such as “apple”,
“wireless”, and “network” — making the effect of the cluster’s refinements
more obvious.

6.10 Other Applications

AbraQ and Qasp are two different applications of the QAA that help users
with underrepresented query aspects and hard ambiguous queries respec-
tively. The QAA is a very powerful technique and it has many other useful
applications to web search. This section outlines four additional applica-
tions of the QAA that future research could explore.

6.10.1 Query Phrases

A very simple application of the QAA is to change the query from a set
of terms, to a set of phrases, where each phrase corresponds to a query
aspect. As the QAA accurately identifies query aspects, this might reduce
the ambiguity of queries where the order of the query terms is important.
For example, “Air Canada flights to New Zealand” would not be confused
with “Air New Zealand flights to Canada”.
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6.10.2 Query Reduction

When a query contains too many keywords, the search engine often finds
very few or even no matching documents. However, these queries actu-
ally contain more information and should theoretically produce better re-
sults. The problem is that the exact match model typically used by search
engines deteriorates rapidly when presented with superfluous informa-
tion and generally results in empty result sets. One solution is Automatic
Query Reduction (AQR) methods that reduce the number of query terms
[112].

The QAA and AbraQ provide an ideal foundation for performing AQR.
Firstly, an AQR method based on the QAA would formulate a new query
by finding a subset consisting of the most informative query terms that re-
trieve sufficiently many results. Then it would apply a variation of AbraQ
to maximize the utility of the information contained in the original query.
Specifically, it could use AbraQ to add a new term, but use all the orig-
inal query’s aspects when computing the refinement scores, rather than
just the aspects in the reduced query, thereby capturing the information
represented by the removed terms.

6.10.3 Search Sessions

For hard searches, users often perform a series of related queries, each
of which contains useful information about their search goal. However,
search engines typically ignore this useful information as they treat queries
independently. By giving users the option to delineate search sessions,
the refinement scores used by AbraQ, Qasp, and other applications of the
QAA might improve by accounting for the aspects identified in previous
queries. However, the information from a search session is much richer
than that in a single query, and consequently, the QAA may benefit even
more than normal from a richer aspect model.

In a temporal context, the weighting of different aspects and related



6.11. RECENT DEVELOPMENTS AT GOOGLE 331

aspects takes on a greater importance. There will undoubtedly be many
more related aspects than in an individual query and the relative frequency
of those aspects might signify their relative importance to the user. Addi-
tionally, the user may make subtle changes to their search goal without
starting a new search session, making it important to de-weight older as-
pects.

6.10.4 Relevance Feedback

Relevance feedback is a useful source of information and in the context of
search sessions, pseudo-relevance feedback may be even more useful —
specifically, methods could assume the results of previous searches were
irrelevant. One application of the QAA would be to combine AbraQ or
Qasp with relevance feedback and to use the feedback to guide the selec-
tion of future refinements.

6.11 Recent Developments at Google

Google has recently changed from an exact match model to a best match
model as explained in section 2.6.2. An additional consequence of this
change is its impact on the QAA. Like the refinement by semantically or-
thogonal keywords strategy that is similarly affected, the QAA relies on
the addition of query terms to change the meaning of queries; with a best
match model, it is possible that adding terms will not change the meaning
of a query at all, because the retrieved documents are no longer required
to contain the added terms. For example, “dinner lunch food c#” finds
many documents that do not contain the term “c#”.

While this change does not necessarily stop the QAA from being useful
atop Google, it may result in the QAA producing a smaller performance
benefit or improving fewer queries. Therefore, future experiments should
account for this change, either by integrating with search engines such as
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Google at a lower level where the QAA could have more influence on the
retrieval process, or by running atop different search engines that perform
an exact match and therefore use all the query terms.

Additionally, note that when I presented the QAA at KDD in 2007,
there was substantial interest from all the major search engines. It is en-
tirely possible that since running my experiments Google and other public
search engines have implemented AbraQ or something similar. Conse-
quently, if true, as search improvements are not additive, the secondary
application of AbraQ should not be expected to improve performance fur-
ther. This is obviously a significant drawback to using a strong constantly
evolving proprietary baseline for evaluation, but it also signifies the re-
search communities need for a strong constantly evolving versioned base-
line accompanied by a large static web scale dataset.



Chapter 7

Conclusion and Future Work

Web search is a common task performed regularly by a huge number of
people that has reshaped the world and how everyone accesses informa-
tion. The problem is that many searches are still very hard, even for ex-
perts, and for the average user, query refinement for these searches is at
best troublesome and at worst impossible. This thesis has made progress
towards addressing this challenging problem by developing novel ap-
proaches that help users refine their queries and by investigating how to
properly compare and evaluate different approaches.

This thesis has contributed to three main areas within the web search
domain: evaluation, clustering, and query refinement. Section 7.1 presents
the conclusions of chapter 3’s survey of web search result evaluation meth-
ods and best practices. Section 7.2 presents the conclusions of chapter 4’s
investigation of web page clustering evaluation methods and its new QC4
cluster evaluation method. Section 7.3 presents the conclusions of chapter
5’s investigation of web page clustering algorithms and its new Query Di-
rected Clustering algorithm, QDC. Finally, section 7.4 presents the conclu-
sions of chapter 6’s investigation of query difficulty, its new Query Aspect
Approach (QAA), and its applications of the QAA, AbraQ and Qasp. Each
section also outlines some directions for future research.

333
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7.1 Web Search Evaluation

This thesis has surveyed the research literature on approaches to web search
evaluation and based on this, determined best practice for conducting an
evaluation of web search results, which was subsequently used to evaluate
AbraQ and Qasp in chapter 6. Specifically, chapter 3 provided guidance
on selecting a methodology, selecting a corpus, obtaining a query test set,
choosing a baseline, and selecting performance measures.

The thesis concluded that a non-interactive methodology using search
engine corpora such as Google or Yahoo is most suited for evaluating
web search results when methods are scale-dependent. It argued that
while TREC datasets provide a good source of queries, the associated
relevance judgments are not reusable on large collections because they
are incomplete, and consequently, do not rank the relative performance
of algorithms correctly and even worse, the best performing algorithms
are the most negatively affected. It concluded that even small test sets
are suitable for evaluation, because they are sufficient to detect large dif-
ferences between algorithms and users do not notice small differences.
It concluded that binary relevance judgments made by a single user are
suitable for evaluation: although alternate methods changed the absolute
measure of performance, they did not affect the relative performance of
algorithms. It found that the commercial search engines outperformed
typical TREC systems (across a wide range of queries, but not in specific
instances against specific systems) and that of the commercial search en-
gines, Google slightly outperformed its rivals. It therefore concluded that
Google was the best baseline for comparison. Finally, it identified that P@5
and P@10 are good measures of performance, because most users never
look beyond the first page of the result set.

In the future, a strong baseline search engine should be developed and
optimized for a large static web-scale dataset. To ensure it remains rele-
vant and reusable, the search engine should be versioned and constantly
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evolved to represent the state-of-the-art.

7.2 QC4 Clustering Evaluation

Chapter 4 identified the properties of good web page clustering evaluation
methods. It argued that good evaluation methods should measure both
quality and coverage and measure them separately, because clustering al-
gorithms often tradeoff between them. It argued that measures should
avoid bias due to cluster or topic size, should only give perfect scores to
perfect clusters, and should give the worst performance to random clus-
terings, singleton clusterings, and giant clusterings as they are worthless
to users because they provide no added value over the original result set.
It argued that the measures should account for cluster composition and
segmentation because these affect the usefulness of clusters and should
account for overlapping and hierarchical clusterings because documents
often relate to multiple topics. It also argued that the measures should ac-
count for the limited time of users, and consequently, that there is more
relative value in adding documents to small clusters than to large clusters.

Chapter 4 then showed that none of the existing standard evaluation
measurements met all those criteria and that most failed to meet even half
the criteria. The chapter rectified this by defining a new measurement
called QC4 that allows the fair comparison of all clustering algorithms,
even those that produce clusterings with vastly different characteristics
(cluster granularity: coarse or fine, clustering structure: hierarchical or flat,
disjoint or overlapping, and cluster size: large or small). QC4 achieved
this by generalizing the gold-standard approach to use a richer ideal clus-
tering that can describe ideal clusterings of varying characteristics and by
introducing four new overall measurements that function with clusterings
of different characteristics fairly in terms of cluster quality and topic cov-
erage.

The thesis evaluated QC4 and the existing measurements in three ways:
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on an extensive set of synthetic test cases, on a range of real world web
clustering tasks, and on real world hierarchical clustering tasks. The syn-
thetic test cases showed that only QC4 meets all the requirements of a good
evaluation measurement. The real world web clustering tasks showed
that only QC4 always made the correct conclusions regarding the relative
performance of algorithms. The real world hierarchical clustering tasks
showed that only QC4 and one other measure correctly accounted for hi-
erarchical clusterings.

In the future, standard test data sets and the corresponding ideal clus-
terings should be constructed and then used to evaluate standard cluster-
ing algorithms to provide a baseline for comparison. As discovered while
creating the ideal clusterings for this thesis, manually constructing ideal
clusterings is time consuming and laborious. Researchers could investi-
gate whether tools can assist in the construction of ideal clusterings and
although the current merge-then-cluster approach is unsuitable, because
it cannot produce test sets that are both realistic and accurate, it provides
an obvious starting point for future research on this issue. The QC4 mea-
surements are reasonably complex, researchers could investigate whether
it is possible to create simpler measurements that satisfy all the properties
identified in section 4.2. Researchers could also investigate the applicabil-
ity of QC4 to other clustering domains, especially those where clusterings
have different characteristics.

7.3 QDC Clustering

Chapter 5 identified the conditions under which web page clustering al-
gorithms are effective and the problems that cause them to fail. It found
that clustering methods work well on ambiguous queries for easy searches
because the different query interpretations have distinct vocabularies, but
that existing clustering methods do not work well on other queries be-
cause the document contents do not align with the query interpretations,
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which leads to clusters that are semantically meaningless to users.

Even for easy ambiguous queries, this thesis found that existing al-
gorithms often generate some low quality clusters that are ambiguous,
overly specific, low value, or incomprehensible (semantically meaning-
less) because the algorithms rely too heavily on local document properties.
It found that methods typically increase coverage by merging similar clus-
ters, but current methods require a high threshold of similarity to avoid
merging semantically unrelated clusters, which impairs topic coverage,
and, even so, some unrelated clusters are merged lowering cluster qual-
ity. It found that algorithms generally show a fixed number of clusters,
but often there are fewer topics than clusters and this can confuse users as
multiple clusters relate to the same query intention or the additional clus-
ters are semantically meaningless to users. Finally, it found that the order
of documents in clusters should differ from the order of documents in the
original search results, because the relevance of a document to a cluster is
different from the relevance of a document to the query.

Chapter 5 then presented QDC, a new query directed web page clus-
tering algorithm with five key innovations that addressed the problems
with current algorithms by improving semantic understanding. Firstly,
QDC identifies better clusters using a query directed cluster quality guide
that considers the relationship between a cluster’s descriptive terms and
the query terms. Secondly, QDC increases the merging of semantically
related clusters and decreases the merging of semantically unrelated clus-
ters by comparing the descriptions of clusters in addition to comparing the
overlap of document contents between clusters. Thirdly, QDC fixed the
cluster chaining (drifting) problem using a new cluster splitting method.
Fourthly, QDC chooses better clusters to show the user by improving the
ESTC cluster selection heuristic to consider cluster quality and the num-
ber of clusters to select. Finally, QDC improves the clusters by ranking the
documents according to cluster relevance.

The evaluation in chapter 5 showed that QDC produces clusters that
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are more semantically meaningful to users and that have much higher
quality and much higher coverage than state-of-the-art algorithms on both
full text and snippet data sets. The evaluation in chapter 6 provided fur-
ther evidence in favor of QDC and showed that it outperformed (but not
always significantly) other interactive query expansion methods including
clustering, web-log analysis, relevance feedback, and pseudo-relevance
feedback on hard ambiguous queries, even though QDC was designed for
easy ambiguous queries. The only methods it failed to outperform were
those developed in this thesis specifically for hard queries using the Query
Aspect Approach.

While the results are already very impressive, QDC only considers sin-
gle words; STC, Lingo, and other clustering algorithms have shown that
using phrase information can provide a dramatic improvement. One obvi-
ous direction for future work is to extend QDC to use phrases rather than
just words. Another direction for future improvement is to consider mul-
tiple terms from the cluster descriptions when merging clusters instead of
just considering the most descriptive term.

7.4 Query Aspect Approach

Chapter 6 identified that the queries for many hard searches have multiple
aspects and that the harder the search, the more likely it is to involve mul-
tiple aspects. It then confirmed that the primary reason hard searches fail
is underrepresented query aspects and found that of those that did not,
many failed due to hard ambiguity.

Chapter 6 then presented the novel Query Aspect Approach (QAA),
which reduces the distance between the query models of users and search
engines by capturing the information users embed in queries that is typ-
ically ignored by search engines. Firstly, the QAA uses the order of the
words in the query to identify the different query aspects by considering
the relative frequency of each subsequence of words. Then it builds mod-
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els of the vocabulary associated with each aspect to capture their seman-
tics by running sub-queries for each aspect and each aspect pair to resolve
ambiguities. Finally, it uses the models to judge the quality of a result set
by measuring the representation of each query aspect in the result set.

Chapter 6 then showed the QAA is a powerful, practical, and gen-
eral technique with many applications because it works independently
of document characteristics, the frequency of the query, and is even in-
dependent of there being any relevant documents among those initially
retrieved. The evaluation showed that the QAA can accurately identify
query aspects and that it predicts query difficulty more accurately than
the best alternative (Clarity). Specifically, the QAA successfully discrim-
inates between easy queries and hard queries, enabling targeted appli-
cation of query expansion methods. Identified applications of the QAA
include automatically improving queries with underrepresented aspects
(AbraQ), suggesting refinements for hard ambiguous queries (Qasp), au-
tomatically reducing query ambiguity using phrases, automatically reduc-
ing queries to combat keyword overload, leveraging user search sessions
to learn more about their search goal, and making better use of relevance
feedback and pseudo-relevance feedback.

Chapter 6 then presented AbraQ, an automatic query expansion method
that uses the QAA to improve queries with underrepresented aspects.
AbraQ identifies the query aspects and any underrepresented aspects us-
ing the QAA. Then if the original result set underrepresents any aspects,
AbraQ uses the QAA to evaluate candidate refinements from the vocab-
ulary models of the most underrepresented aspect and applies the best
refinement automatically. The evaluation showed that AbraQ substan-
tially improves the performance of queries for hard searches and that even
though it was completely automatic, its performance was almost as good
as the best interactive approaches with perfect user input.

Chapter 6 then presented Qasp, an interactive query expansion method
that uses the QAA to help users refine hard ambiguous queries. Qasp
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identifies the query aspects using the QAA and then selects a diverse set
of good refinements from the aspect vocabulary models. It then clus-
ters the refinements and if there is more than one cluster, the query is
ambiguous and Qasp presents the refinements to the user. The evalua-
tion showed that for hard ambiguous queries, selecting a diverse range
of refinements was superior to selecting the individually best refinements,
that Qasp significantly outperformed other interactive expansion meth-
ods, and that Qasp found both more refinements that are relevant and
refinements for a much wider range of relevant search goals. The eval-
uation also showed that clustering refinements is a promising technique
that sometimes helps users to understand the effect of refinements that
would otherwise be meaningless to them, enabling users to choose useful
refinements more frequently.

Future research on the QAA could go in three main directions: im-
proving QAA, improving QAA applications, and new applications. To im-
prove the QAA, researchers could investigate additional factors for iden-
tifying aspects, richer ways of classifying aspects, modelling the relation-
ships between aspects, using absolute rather than relative measures of rep-
resentation, and measuring the representation at the document rather than
result set level. To improve Abraq, researchers could investigate lower-
level integration with search engines. To improve Qasp, researchers could
investigate clustering additional refinements, methods of identifying irrel-
evant refinements, and methods of generating cluster descriptions. Future
research could also implement and investigate the outlined applications or
other new applications of the QAA.
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